Derivatives of the trigonometric functions

In our earlier article "Addition and subtraction rules for trigonometric functions," we had:

$$
\begin{align*}
\sin (a+b) & =\sin a \cos b+\cos a \sin b \tag{1}\\
\cos (a+b) & =\cos a \cos b-\sin a \sin b \tag{2}\\
\sin (a-b) & =\sin a \cos b-\cos a \sin b \tag{3}\\
\cos (a+b) & =\cos a \cos b+\sin a \sin b \tag{4}
\end{align*}
$$

Subtracting the third equation from the first equation, we get:

$$
\begin{equation*}
2 \cos a \sin b=\sin (a+b)-\sin (a-b) \tag{5}
\end{equation*}
$$

Subtracting the fourth equation from the second equation. we get:

$$
\begin{equation*}
-2 \sin a \sin b=\cos (a+b)-\cos (a-b) \tag{6}
\end{equation*}
$$

Now plug the followings

$$
\begin{equation*}
a=\frac{A+B}{2}, \quad b=\frac{A-B}{2} \tag{7}
\end{equation*}
$$

into (5) and(6). Then, we get:

$$
\begin{align*}
\sin A-\sin B & =2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \tag{8}\\
\cos A-\cos B & =-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \tag{9}
\end{align*}
$$

Now, let's calculate the derivative of the sine function.

$$
\begin{align*}
\frac{d}{d x} \sin x & =\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin x}{\Delta x}=\frac{2 \cos \frac{x+\Delta x+x}{2} \sin \frac{x+\Delta x-x}{2}}{\Delta x} \tag{10}\\
& =\lim _{\Delta x \rightarrow 0} \cos (x+\Delta x / 2) \frac{\sin (\Delta x / 2)}{\Delta x / 2} \tag{11}
\end{align*}
$$

Now remember that we proved the following in our earlier article.

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \tag{12}
\end{equation*}
$$

Using this, (11) becomes:

$$
\begin{align*}
\frac{d}{d x} \sin x & =\lim _{\Delta x \rightarrow 0} \cos (x+\Delta x / 2) \lim _{\Delta x / 2 \rightarrow 0} \frac{\sin (\Delta x / 2)}{\Delta x / 2} \tag{13}\\
& =\lim _{\Delta x \rightarrow 0} \cos (x+\Delta x / 2) \cdot 1=\cos x \tag{14}
\end{align*}
$$

where in the first step we use the fact that $\Delta x / 2 \rightarrow 0$ is the same condition as $\Delta x \rightarrow 0$. So, we conclude that the derivatives of $\sin x$ with respect to x is $\cos x$. Similarly, using (9), one can prove that the derivatives of $\cos x$ with respect to x is $-\sin x$.

Problem 1. Prove this.
Problem 2.

$$
\begin{equation*}
\left(x^{2} \sin x\right)^{\prime}=? \tag{15}
\end{equation*}
$$

Problem 3. $\left(\right.$ Hint $\left.^{1}\right)$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x \sin \frac{1}{x}=?, \quad \lim _{x \rightarrow \infty} x \sin \frac{1}{x^{2}}=? \tag{16}
\end{equation*}
$$

In the rest of article, I will present an alternative way to obtain the derivatives of trigonometric functions. To this end, we will first need to prove

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0 \tag{17}
\end{equation*}
$$

In our earlier article, you have proved

$$
\begin{equation*}
\frac{1-\cos 2 \theta}{2}=\sin ^{2} \theta \tag{18}
\end{equation*}
$$

Thus, (17) becomes

$$
\begin{align*}
-\lim _{x \rightarrow 0} \frac{1-\cos x}{x}= & -\lim _{2 \theta \rightarrow 0} \frac{1-\cos 2 \theta}{2 \theta}=-\lim _{2 \theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta} \\
& =-\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \theta=-1 \cdot 0=0 \tag{19}
\end{align*}
$$

This completes the proof. Now, let's calculate the derivative of sine function. Using (1),

$$
\begin{align*}
\frac{d}{d x} \sin x & =\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin x}{x}=\frac{\sin x \cos \Delta x+\cos x \sin \Delta x-\sin x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \sin x \frac{\cos \Delta x-1}{\Delta x}+\cos x \frac{\sin \Delta x}{\Delta x} \\
& =\sin x \lim _{\Delta x \rightarrow 0} \frac{\cos \Delta x-1}{\Delta x}+\cos x \lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x} \\
& =\sin x \cdot 0+\cos x \cdot 1=\cos x \tag{20}
\end{align*}
$$

This completes the proof.
Problem 4. Using (2), (12) and (17), prove

$$
\begin{equation*}
\frac{d}{d x} \cos x=-\sin x \tag{21}
\end{equation*}
$$

Summary

- $\frac{d(\sin x)}{d x}=\cos x$
- $\frac{d(\cos x)}{d x}=-\sin x$

[^0]
[^0]: ${ }^{1}$ Reexpress the formulas in terms of variable $y=1 / x$.

