Determinant of 2×2 matrices

In the earlier article "Matrix inverses," I noted that the solution of the following equation:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \tag{1}\\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

is given by the following:

$$
\left[\begin{array}{c}
x_{1} \tag{2}\\
x_{2}
\end{array}\right]=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

where $\operatorname{det} A$ is given by the following:

$$
\begin{equation*}
\operatorname{det} A=a_{11} a_{22}-a_{21} a_{12} \tag{3}
\end{equation*}
$$

Given this, I want to ask "When does the solution not exist?" We all know that one cannot divide a certain quantity by zero. Therefore, it is easy to see from (2) that this condition amounts $\operatorname{det} A=0$. The point is that the ratio between a_{11} and a_{12} is the same as a_{21} and a_{22}. Therefore, if you try to eliminate one of the variables x_{1} and x_{2} by multiplying one of the equations by appropriate factor and subtract this from the other equation you get an equation like " $0 x+0 y=$ something." Let me give you an explicit example so that you can understand better what I am saying:

Let's say

$$
\left[\begin{array}{ll}
6 & 4 \tag{4}\\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
10 \\
4
\end{array}\right]
$$

In other words:

$$
\begin{gather*}
6 x_{1}+4 x_{2}=10 \tag{5}\\
3 x_{1}+2 x_{2}=4 \tag{6}
\end{gather*}
$$

Multiplying (6) by 2 and subtracting from (5) yields the following:

$$
\begin{equation*}
0 x_{1}+0 x_{2}=2 \tag{7}
\end{equation*}
$$

which obviously doesn't have any solutions. As the left-hand side is always 0 which can never equal to 2 .

However, in fact, there are cases that the solutions exist even though the determinant is zero. The condition that the determinant is zero implies that
one can obtain " $0 x_{1}+0 x_{2}$ " from the standard rule of solving simultaneously equations, but it never tells about the right-hand side of " $0 x_{1}+0 x_{2}$ " which in our example is 2 . Therefore, if the right-hand side is zero, we can have solutions, and in fact infinitely many.

Now, to learn the property of determinant better, let's consider the case that $y_{1}=y_{2}=0$. When the determinant is not zero, the solution will be always $x_{1}=x_{2}=0$. We can easily see this from (2). However, when determinant is zero, we can have solutions other than $x_{1}=x_{2}=0$. As the ratio between a_{11} and a_{12} is equal to a_{21} and a_{22}, any x_{1} and x_{2} that satisfy (8) will satisfy (9).

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=0 \tag{8}\\
& a_{21} x_{1}+a_{22} x_{2}=0 \tag{9}
\end{align*}
$$

For example, if $6 x_{1}+4 x_{2}=0,3 x_{1}+2 x_{2}=0$ is automatically satisfied. Also, notice that there are infinitely many such solutions as (8) has infinitely many solutions.

Therefore, in this article we learned that for 2×2 matrix " A " and 2×1 matrix " x " $A x=0$ has non-zero solutions if and only if $\operatorname{det} A=0$. This can be generalized to $n \times n$ matrix where n is a bigger number, if we can define the corresponding determinant of $n \times n$ matrix appropriately. For example, (10) has a non-zero solution, if and only if (11) is satisfied.

$$
\begin{gather*}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \tag{10}\\
\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=0 \tag{11}
\end{gather*}
$$

Some books use the following notation for determinant:

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Notice that the brackets of matrix are replaced by vertical bars to denote the determinant.

If you have read our earlier article "System of linear equations, part II: three or more unknowns," you may notice that the condition that (10) has a non-zero solution is equivalent to the condition that the equations (10) are linearly dependent. In any case, we will show you how one can define determinant for $n \times n$ matrix for any n in the next article.

Summary

- $A x=0$, where A is a matrix, has a non-zero solution x if and only if $\operatorname{det} A=0$.

