Diagonalization

Suppose you have the following 3 eigenvectors e_{1}, e_{2}, e_{3} with the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ for an 3×3 matrix A.

$$
\begin{equation*}
A e_{i}=\lambda e_{i} \tag{1}
\end{equation*}
$$

Then, we can express this as:

$$
A\left(e_{1}, e_{2}, e_{3}\right)=\left(e_{1}, e_{2}, e_{3}\right)\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{2}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

For example, if $e_{1}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right), e_{2}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right), e_{3}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right), \lambda_{1}=1, \lambda_{2}=2$, $\lambda_{3}=-2$

We have:

$$
A\left(\begin{array}{ccc}
2 & 0 & -1 \tag{3}\\
1 & 3 & 1 \\
-1 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Now, let $P=(e 1, e 2, e 3)^{-1}$, then we can write the above equation as:

$$
A P^{-1}=P^{-1}\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{4}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

Then, we have:

$$
P A P^{-1}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{5}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

So, if we define $A^{\prime}=P A P^{-1}, A^{\prime}$ is just a similarity transformation of A. Notice also that all the non-diagonal elements of this matrix is zero, and the diagonal elements are given by the eigenvalues. In other words, we changed the basis in such a way that the matrix is maximally simplified. This procedure is called "diagonalization."

Let's take another look at what we have done.

In the new basis,

$$
e_{1}^{\prime}=\left(\begin{array}{l}
1 \tag{6}\\
0 \\
0
\end{array}\right), \quad e_{2}^{\prime}=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}^{\prime}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and,

$$
A^{\prime}\left(\begin{array}{l}
1 \tag{7}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} \\
0 \\
0
\end{array}\right), \quad A^{\prime}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
\lambda_{2} \\
0
\end{array}\right), \quad A^{\prime}\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\lambda_{3}
\end{array}\right)
$$

which is equivalent to

$$
A^{\prime}\left(\begin{array}{ccc}
1 & 0 & 0 \tag{8}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

implies

$$
A^{\prime}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{9}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

In other words, the eigenvectors are basis as you can see from (6).
Having diagonalized the matrix A in this way, it is easy to see the followings:

$$
\begin{gather*}
\operatorname{det} A=\operatorname{det}\left(P A P^{-1}\right)=\lambda_{1} \lambda_{2} \lambda_{3} \tag{10}\\
\operatorname{tr} A=\operatorname{tr}\left(P A P^{-1}\right)=\lambda_{1}+\lambda_{2}+\lambda_{3} \tag{11}
\end{gather*}
$$

In other words, the above two equations are satisfied for any 3×3 matrix A since its determinant and trace are same as those of its diagonalized ones. In this article, we have considered 3×3 matrix, but all our constructions here can be easily generalized to $n \times n$ matrix. For example, the product of all eigenvalues is the determinant, and the sum of all eigenvalues is trace.

Problem 1. Assuming that a matrix M is diagonalizable, prove the following:

$$
\begin{equation*}
\operatorname{Tr} \ln M=\ln \operatorname{det} M \tag{12}
\end{equation*}
$$

Problem 2. Calculate $A^{\prime-1}$ for (9). What happens when at least one of the eigenvalues is zero (i.e. the determinant ($=$ the product of all eigenvalues) is zero)? Why can't we have $A^{\prime-1}$ in such a case? On the other hand, show that if the determinant (i.e. the product of all eigenvalues) is non-zero, we can have $A^{\prime-1}$.

Summary

- For any generic linear operator, it is possible to find a set of basis, on which the matrix is diagonal.
- Such a process is called diagonalization. One can do this by a similarity transformation.
- The sum of all eigenvalues is trace, and the product of all eigenvalues is determinant.

