
Divergence and Stoke’s theorem

1 Stoke’s theorem

Suppose you have a very small three-dimensional region as follows

x0 ≤ x ≤ x0 + ∆x, y0 ≤ y ≤ y0 + ∆y, z0 ≤ z ≤ z + ∆z (1)

and you want to calculate the flux coming out of this region given the fol-
lowing vector field

~U = Ux(x, y, z)x̂+ Uy(x, y, z)ŷ + Uz(x, y, z)ẑ (2)

We can do this by computing the contributions from Ux, Uy and Uz

separately and add them up. So, let’s calculate the contribution from Ux

first. See Fig. 1. You see that the contribution should be∫ z0+∆z

z0

∫ y0+∆y

y0

Ux(x0 + ∆x, y, z)dydz −
∫ z0+∆z

z0

∫ y0+∆y

y0

Ux(x0, y, z)dydz

=

∫ z0+∆z

z0

∫ y0+∆y

y0

(Ux(x0 + ∆x, y, z)− Ux(x0, y, z))dydz (3)

Now, using the Taylor expansion, we have:

Ux(x0 + ∆x, y, z) ≈ Ux(x0, y, z) +
∂Ux

∂x
(x0, y, z)∆x (4)

Then, (3) becomes

lim
∆y,∆z→0

∫ z0+∆z

z0

∫ y0+∆y

y0

∂Ux

∂x
(x0, y, z)∆xdydz

= lim
∆x,∆y,∆z→0

∂Ux

∂x
(x0, y0, z0)∆x∆y∆z (5)

We can do the similar calculation for Uy as well. See Fig. 1. Then, we
get:

∂Uy

∂y
(x0, y0, z0)∆x∆y∆z (6)
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Figure 1: Divergence
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And, similarly for Uz. In conclusion, the total flux coming out of the small
region is given by: (

∂Ux

∂x
+
∂Uy

∂y
+
∂Uz

∂z

)
∆x∆y∆z (7)

Now, we have a enough motivation to define “divergence” as follows:

div~U ≡ ∇ · ~U ≡ ∂Ux

∂x
+
∂Uy

∂y
+
∂Uz

∂z
(8)

If we denote the volume element as dV = dxdydz, then (7) becomes:

(∇ · ~U)dV (9)

Given this, could we calculate the flux coming out of a certain, non-
infinitesimal region in terms of divergence? In other words, could we express
the following in terms of divergence?∮

A

~U · dA (10)

where A is a certain closed surface. (i.e. it has no boundary.) (The “o” in the
integral sign means that A is a closed surface. Also, we expressed the double
integral by a single integral for the convenience of notation. Remember that
strictly speaking, it should be double integral because the area element
dA = dxdy needs two integration sign.) The answer is Yes. It is easy to see
that the flux coming out of the surface A should be equal to the total sum of
the flux coming out of the 3-dimensional volume bounded by A. Therefore
(10) is equal to the volume integration of (9). Let’s denote the bounded
region as Ω, then the boundary of Ω is A. Mathematicians often denote
the boundary by ∂. So, A = ∂Ω. Therefore, we have proven the following
equation, called “Stoke’s theorem.”∫

Ω

(
∇ · ~U

)
dV =

∮
∂Ω

~U · dA (11)

(Here, we expressed the triple integral in the left-hand side as a single inte-
gral for the convenience of notation.)

This may sound too abstract so let me explain this with an analogy.
Suppose we have water flowing, and let’s assume that the water is not com-
pressible, i.e. the density is constant. Then, if water is literally created
inside the cube in Fig. 1. the total flux out of the cube will be positive;
the divergence of water’s velocity at that point will be positive. If water
is literally destroyed inside the cube, the total flux out of the cube will be
negative; the divergence of water’s velocity at that point will be negative. If
water is neither generated nor destroyed inside the cube, but just passes by,
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there will be no net flux; the divergence will be zero. Of course, in reality,
water is hard to be created or destroyed. The closest we can get is water
coming out of a “source” or water sucking into a “sink.” See the figure
below.

On the left, water is being transported through a hose and is coming out
of a source. In this case, the total flux coming out of the cube, if we ignore
the flux going in through the hose, is positive. Thus, the divergence at the
source (i.e. the tip of the hose) is positive. (Of course, if we ignore that the
water is coming in through the hose.)

On the right, water is being sucked into the sink and transported out
through a hose. In this case, the total flux coming out of the cube, if we
ignore the flux going out through the hose, is negative. Thus, the divergence
at the sink (i.e. the tip of the hose) is negative (Of course, if we ignore that
the water is going out through the hose.)

In these examples, we considered a cube, but it can be any volume Ω as
we saw in (11).

2 Continuity equation

We can re-express the continuity equation using Stoke’s theorem as follows:∫
∂ρ

∂t
dV = −

∮
(ρ~v) · d ~A

= −
∫
∇ · (ρ~v)dV (12)

Therefore, we conclude:
∂ρ

∂t
+∇ · (ρ~v) = 0 (13)

In physics, we often denote ~j = ρ~v, which yields:

∂ρ

∂t
+∇ ·~j = 0 (14)

See Fig. 2 and Fig. 3. If the divergence of ~j is positive, it means that
flux is going out of the cube, which means that the mass inside the cube
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Figure 2: ∇ ·~j > 0 Figure 3: ∇ ·~j < 0

must be decreasing, as we have no other source of the mass. (We do not
have a hose here which would supply the mass from outside.) Indeed, you
can check from (14) that the density is decreasing in such a case. And,
similarly, for the other case: if the divergence of ~j is negative, it means that
flux is going into the cube, which means that the mass inside the cube must
be increasing. (We do not have a hose here which would suck the mass
and send it outside.) Indeed, you can check from (14) that the density is
increasing in such a case.

Summary

• If there is a source, the divergence is positive. If there is a sink, the
divergence is negative.

• Stoke’s theorem is given by∫
Ω

(
∇ · ~U

)
dV =

∮
∂Ω

~U · dA
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