The dot product and law of cosines

In this article, using law of cosines, we will derive

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \tag{1}$$

where θ is the angle between \vec{A} and \vec{B} .

Given this, see Fig.1. We clearly have $\vec{C} = \vec{A} - \vec{B}$, and the law of cosines state the following:

$$|\vec{C}|^2 = |\vec{A}|^2 + |\vec{B}|^2 - 2|\vec{A}||\vec{B}|\cos\theta$$
(2)

as $|\vec{A}|, |\vec{B}|, |\vec{C}|$ are the lengths of sides of the triangle.

Furthermore, as we know that

$$\begin{aligned} |\vec{C}|^2 &= \vec{C} \cdot \vec{C} = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B}) = \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{B} - 2\vec{A} \cdot \vec{B} \\ &= |\vec{A}|^2 + |\vec{B}|^2 - 2\vec{A} \cdot \vec{B} \end{aligned} \tag{3}$$

Comparing with (2) we obtain (1).

Problem 1. Show that the magnitudes of \vec{D} and \vec{E} are same, if $\vec{D} + \vec{E}$ and $\vec{D} - \vec{E}$ are perpendicular. (Hint¹)

Problem 2. Calculate the angle between \vec{F} and \vec{G} if $|\vec{F}| = |\vec{G}|$ and $|\vec{F} + \vec{G}| = |\vec{F} - \vec{G}|$. (Hint²)

¹If two vectors are perpendicular, their dot product is zero. ²Use $|\vec{F}|^2 = |\vec{G}|^2$ and $|\vec{F} + \vec{G}|^2 = |\vec{F} - \vec{G}|^2$.

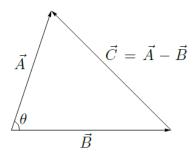


Figure 1: A triangle formed by \vec{A} , \vec{B} , and \vec{C}