The dot product and law of cosines

In this article, using law of cosines, we will derive

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta \tag{1}
\end{equation*}
$$

where θ is the angle between \vec{A} and \vec{B}.
Given this, see Fig.1. We clearly have $\vec{C}=\vec{A}-\vec{B}$, and the law of cosines state the following:

$$
\begin{equation*}
|\vec{C}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}-2|\vec{A}||\vec{B}| \cos \theta \tag{2}
\end{equation*}
$$

as $|\vec{A}|,|\vec{B}|,|\vec{C}|$ are the lengths of sides of the triangle.
Furthermore, as we know that

$$
\begin{align*}
|\vec{C}|^{2} & =\vec{C} \cdot \vec{C}=(\vec{A}-\vec{B}) \cdot(\vec{A}-\vec{B})=\vec{A} \cdot \vec{A}+\vec{B} \cdot \vec{B}-2 \vec{A} \cdot \vec{B} \tag{3}\\
& =|\vec{A}|^{2}+|\vec{B}|^{2}-2 \vec{A} \cdot \vec{B} \tag{4}
\end{align*}
$$

Comparing with (2) we obtain (1).
Problem 1. Show that the magnitudes of \vec{D} and \vec{E} are same, if $\vec{D}+\vec{E}$ and $\vec{D}-\vec{E}$ are perpendicular. (Hint ${ }^{1}$)

Problem 2. Calculate the angle between \vec{F} and \vec{G} if $|\vec{F}|=|\vec{G}|$ and $|\vec{F}+\vec{G}|=|\vec{F}-\vec{G}| .\left(\right.$ Hint $\left.^{2}\right)$

[^0]

Figure 1: A triangle formed by \vec{A}, \vec{B}, and \vec{C}

[^0]: ${ }^{1}$ If two vectors are perpendicular, their dot product is zero.
 ${ }^{2}$ Use $|\vec{F}|^{2}=|\vec{G}|^{2}$ and $|\vec{F}+\vec{G}|^{2}=|\vec{F}-\vec{G}|^{2}$.

