The dot product

Consider the vectors $\vec{A} = A_x \hat{x} + A_y \hat{y}$ and $\vec{B} = B_x \hat{x} + B_y \hat{y}$ drawn in Figure 1. Then, is there a simple way to express θ , the angle between the two vectors in terms of their components A_x , A_y , B_x , and B_y ? This is the question to which we will find an answer in this article.

First, if α is the angle \vec{A} makes with the x-axis, we have:

$$\cos \alpha = \frac{A_x}{|\vec{A}|}, \qquad \sin \alpha = \frac{A_y}{|\vec{A}|} \tag{1}$$

where $|\vec{A}| = \sqrt{A_x^2 + A_y^2}$ is the magnitude of \vec{A} .

Similarly, if β is the angle \vec{B} makes with the *y*-axis, we have:

$$\cos\beta = \frac{B_x}{|\vec{B}|}, \qquad \sin\beta = \frac{B_y}{|\vec{B}|} \tag{2}$$

where $|\vec{B}| = \sqrt{B_x^2 + B_y^2}$ is the magnitude of \vec{B} . Given this, we now use the fact that $\theta = \beta - \alpha$. The trick is calculating its cosine as follows:

$$\cos\theta = \cos(\beta - \alpha) = \cos\alpha\cos\beta + \sin\alpha\sin\beta \tag{3}$$

$$= \frac{A_x}{|\vec{A}|} \frac{B_x}{|\vec{B}|} + \frac{A_y}{|\vec{A}|} \frac{B_y}{|\vec{B}|} \tag{4}$$

$$= \frac{A_x B_x + A_y B_y}{|\vec{A}||\vec{B}|} \tag{5}$$

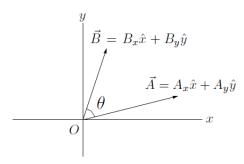


Figure 1: the angle θ between \vec{A} and \vec{B}

Therefore, we found the answer to our question. θ is given by

$$\theta = \cos^{-1}\left(\frac{A_x B_x + A_y B_y}{|\vec{A}||\vec{B}|}\right) \tag{6}$$

This suggests us that our notation is simpler if we define the dot product between \vec{A} and \vec{B} as follows:

$$\vec{A} \cdot \vec{B} = (A_x \hat{x} + A_y \hat{y}) \cdot (B_x \hat{x} + B_y \hat{y}) = A_x B_x + A_y B_y \tag{7}$$

Then, we see that

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \tag{8}$$

where θ is the angle between \vec{A} and \vec{B} .

In higher-dimensions, the dot product is similarly defined. For example, in 3-dimensions, we have:

$$\vec{A} \cdot \vec{B} = (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \cdot (B_x \hat{x} + B_y \hat{y} + B_z \hat{z}) = A_x B_x + A_y B_y + A_z B_z$$

In the next article, using "law of cosines," we will prove that (8) is satisfied in the 3-dimensional case as well, if we draw these two vectors in 3-dimensions.

Now, let me mention several properties of the dot product. First, the dot product is commutative. In other words, $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$. This follows from the fact that $A_x B_x + A_y B_y + A_z B_z = B_x A_x + B_y A_y + B_z A_z$. Second, the dot product is distributive. In other words, $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$. The check is left as an exercise to the readers. Third, the dot product of a vector with itself gives you the square of its magnitude. In other words, $\vec{A} \cdot \vec{A} = |\vec{A}|^2$. This is easily proven since $A_x A_x + A_y A_y + A_z A_z = A_x^2 + A_y^2 + A_z^2$.

We also would like to mention that the angle between two vectors is the right angle, if their dot product vanishes. This is evident from (8). If we plug in $\theta = 90^{\circ}$, we get $\vec{A} \cdot \vec{B} = 0$. In such a case, we call \vec{A} and \vec{B} are orthogonal to each other.

Problem 1. What is the angle between two vectors $\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{B} = -4\hat{i} - 4\hat{j} + 2\hat{k}$?

Problem 2. Check that $\cos \theta$ as obtained in (5) is necessarily between -1 and 1 using Cauchy-Schwarz inequality. Notice that this will be satisfied in higher-dimensions as well.

Summary

• The dot product of two vectors $\vec{A} = A_x \hat{x} + a_y \hat{y} + A_z \hat{z}$ and $\vec{B} = B_x \hat{x} + B_y \hat{y} + B_z \hat{z}$ is given by

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

• If the angle between \vec{A} and \vec{B} is θ , we have

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

- If two non-zero vectors \vec{A} and \vec{B} satisfy $\vec{A} \cdot \vec{B} = 0$, the two vectors are perpendicular to each other.
- $\vec{A} \cdot \vec{A} = |\vec{A}|^2$.
- $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$.