The dot product

Consider the vectors $\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}$ and $\vec{B}=B_{x} \hat{x}+B_{y} \hat{y}$ drawn in Figure 1. Then, is there a simple way to express θ, the angle between the two vectors in terms of their components A_{x}, A_{y}, B_{x}, and B_{y} ? This is the question to which we will find an answer in this article.

First, if α is the angle \vec{A} makes with the x-axis, we have:

$$
\begin{equation*}
\cos \alpha=\frac{A_{x}}{|\vec{A}|}, \quad \sin \alpha=\frac{A_{y}}{|\vec{A}|} \tag{1}
\end{equation*}
$$

where $|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$ is the magnitude of \vec{A}.
Similarly, if β is the angle \vec{B} makes with the y-axis, we have:

$$
\begin{equation*}
\cos \beta=\frac{B_{x}}{|\vec{B}|}, \quad \sin \beta=\frac{B_{y}}{|\vec{B}|} \tag{2}
\end{equation*}
$$

where $|\vec{B}|=\sqrt{B_{x}^{2}+B_{y}^{2}}$ is the magnitude of \vec{B}.
Given this, we now use the fact that $\theta=\beta-\alpha$. The trick is calculating its cosine as follows:

$$
\begin{align*}
\cos \theta & =\cos (\beta-\alpha)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \tag{3}\\
& =\frac{A_{x}}{|\vec{A}|} \frac{B_{x}}{|\vec{B}|}+\frac{A_{y}}{|\vec{A}|} \frac{B_{y}}{|\vec{B}|} \tag{4}\\
& =\frac{A_{x} B_{x}+A_{y} B_{y}}{|\vec{A}||\vec{B}|} \tag{5}
\end{align*}
$$

Figure 1: the angle θ between \vec{A} and \vec{B}

Therefore, we found the answer to our question. θ is given by

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{A_{x} B_{x}+A_{y} B_{y}}{|\vec{A}||\vec{B}|}\right) \tag{6}
\end{equation*}
$$

This suggests us that our notation is simpler if we define the dot product between \vec{A} and \vec{B} as follows:

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=\left(A_{x} \hat{x}+A_{y} \hat{y}\right) \cdot\left(B_{x} \hat{x}+B_{y} \hat{y}\right)=A_{x} B_{x}+A_{y} B_{y} \tag{7}
\end{equation*}
$$

Then, we see that

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta \tag{8}
\end{equation*}
$$

where θ is the angle between \vec{A} and \vec{B}.
In higher-dimensions, the dot product is similarly defined. For example, in 3-dimensions, we have:

$$
\vec{A} \cdot \vec{B}=\left(A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right) \cdot\left(B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}\right)=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

In the next article, using "law of cosines," we will prove that (8) is satisfied in the 3-dimensional case as well, if we draw these two vectors in 3-dimensions.

Now, let me mention several properties of the dot product. First, the dot product is commutative. In other words, $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$. This follows from the fact that $A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=B_{x} A_{x}+B_{y} A_{y}+B_{z} A_{z}$. Second, the dot product is distributive. In other words, $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$. The check is left as an exercise to the readers. Third, the dot product of a vector with itself gives you the square of its magnitude. In other words, $\vec{A} \cdot \vec{A}=|\vec{A}|^{2}$. This is easily proven since $A_{x} A_{x}+A_{y} A_{y}+A_{z} A_{z}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}$.

We also would like to mention that the angle between two vectors is the right angle, if their dot product vanishes. This is evident from (8). If we plug in $\theta=90^{\circ}$, we get $\vec{A} \cdot \vec{B}=0$. In such a case, we call \vec{A} and \vec{B} are orthogonal to each other.

Problem 1. What is the angle between two vectors $\vec{A}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{B}=-4 \hat{i}-4 \hat{j}+2 \hat{k}$?

Problem 2. Check that $\cos \theta$ as obtained in (5) is necessarily between -1 and 1 using Cauchy-Schwarz inequality. Notice that this will be satisfied in higher-dimensions as well.

Summary

- The dot product of two vectors $\vec{A}=A_{x} \hat{x}+a_{y} \hat{y}+A_{z} \hat{z}$ and $\vec{B}=B_{x} \hat{x}+$ $B_{y} \hat{y}+B_{z} \hat{z}$ is given by

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

- If the angle between \vec{A} and \vec{B} is θ, we have

$$
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta
$$

- If two non-zero vectors \vec{A} and \vec{B} satisfy $\vec{A} \cdot \vec{B}=0$, the two vectors are perpendicular to each other.
- $\vec{A} \cdot \vec{A}=|\vec{A}|^{2}$.
- $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$.

