
Is math and science homework mechanical drudgery?

It seems that at least some people think that math and science homework is mechanical

drudgery devoid of creativity and imagination. They think that you just need to apply

formulas, calculate things in prescribed ways, and get answers. In contrast, when you write

a paper for your humanities class, you need to be creative and imaginative since there is

neither a unique answer nor a prescribed way of solving the problems. They say that math

and science homework is like cooking just by following a cookbook. You just cook dishes as

prescribed by the cookbook.

They may be right, but only as far as THEIR math and science courses are concerned,

i.e., low-level math and science courses such as those for high school students and college

freshmen. I guess that I don’t think that this cookbook method of solving problems works

for higher-level courses or high school Math and Science Olympiad questions; you have to

think hard and understand the problems before delving into them. You may, in most cases,

need to tackle the problems in many different ways before finding out the right one that leads

to the correct solution.

I was lucky enough to learn at an early age that math and science problem solving is not

mechanical drudgery. I feel that it is somewhat unfortunate that those who claim that it is

merely mechanical drudgery haven’t had the chance to learn that it is not.

Let me give you an extreme example. A problem that is quite hard to solve with mechan-

ical drudgery only, but a very easy problem if you find a creative way to solve it. See Fig. 1.

There were seven bridges in Königsberg, Germany (present day Kaliningrad, Russia).

Starting from anywhere on the land or the islands (i.e., A, B, C, or D), is there any

path in which you cross all the bridges without crossing the same one more than once? The

answer is no. If you try to show this by brute force, it will take very long, which is indeed

Figure 1: Seven bridges of Königsberg
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a mechanical drudgery, because you have to exhaust all the possibilities. However, a Swiss

mathematician Leonhard Euler proved that the answer was no by a very ingenious method

in 1736. We will explain his proof at the end of the essay.

Japanese Fields Medalist Heisuke Hironaka wrote in “The Joy of Study” that he used to

spend a lot of time solving difficult geometry problems when he was young. In the book, he

showed one of them, which took him a week to figure out. Even though he provided a hint,

I couldn’t solve it. He recalled that times spent on solving such problems were helpful later

when he performed real mathematical research.

Perhaps the way math and science are taught is wrong. We should encourage imagination

in our teaching, if not creativity.

In 2009, I attended a talk about physics education by Professor Mazur at Harvard Uni-

versity. He noted that he used to think that he was a good teacher since he always received

very high grades on the students’ evaluations of his course.

However, he realized that this was a misperception. There is a multiple-choice type test

called the FCI, which consists of about 30 questions that deal with Newtonian mechanics.

This test focuses more on concepts than on problem-solving skills. He had his students take

this test before and after they took his course and compared them. Surprisingly, he found

out that there was not much difference in their performance before and after the course.

Then he said that the conventional physics problems checked only whether students are

able to use physics formulas to plug in appropriate variables, rather than whether they

actually understood the concepts.

As an example, he showed that students could easily solve electric circuit problems by

using Kirchhoff’s laws but failed to solve other electric circuit problems that focused more on

concepts. The conceptual problems should be easier once students understand the concept

since no algebra or formulas are needed. About half of the students got 0 or 2 points out of

10 on the conceptual problems.

Then, he presented his remedy to this problem; he proposed a new teaching method that

can enhance students’ understanding of concepts. If you are interested in this pedagogy,

which he used with successful results, please check my journal entry on September 28th,

2009.

Anyhow, I think he is right. It’s much more important to learn the concepts than to learn

how to use physics formulas without thinking. I also think that standardized tests such as

the SAT should ask such questions, even though it may turn out to be too hard to make

enough problems.

Like homework, actual math and science research are not mechanical drudgery but re-

quires tricks, new concepts, and critical thinking. In a long answer to an internet question,

“What is it like to understand advanced mathematics? Does it feel analogous to having mas-

tery of another language like in programming or linguistics?” “Anonymous” wrote, “To me,

the biggest misconception that non-mathematicians have about how mathematicians work is

that there is some mysterious mental faculty that is used to crack a research problem all at
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once.” “Anonymous” also wrote, “In any case, by the time a problem gets to be a research

problem, it’s almost guaranteed that simple pattern matching won’t finish it.”

Let me comment here for those of you who learned the Pythagorean theorem in middle

school or high school. Imagine you were Pythagoras. How would you find the relation

between the sides in the right triangle? Is it as easy as your homework problem, if you didn’t

know the proof of the Pythagorean theorem beforehand? If you think so, I challenge you

to come up with a proof of the Pythagorean theorem other than the ones you have already

learned. It won’t be as easy as you first imagined even though more than dozens of proofs of

the Pythagorean theorem are already known. Indeed, there is no “mysterious mental faculty”

that can be used to crack such a problem all at once. Even though you may know all the

prerequisites to understand the proof of the Pythagorean theorem, to find one yourself is not

easy. In our later articles, we will present four proofs of the Pythagorean theorem. While

all these four proofs are not that difficult, in a genuine research problem, some proofs are

easier or more elegant than the others of the same theorem. In our later articles “The center

of mass of a triangle,” and “The three altitudes of a triangle always meet at a point,” I will

present multiple approaches to the same problem that lead to the same solution. Then, you

may be able to understand my statement that some proofs are easier or more elegant.

I agree with “anonymous”’s view. When I performed loop quantum gravity research, I

accidentally found out a mysterious formula that fit our theoretical data. By theoretical

data, I mean that we obtained them without performing actual physical experiments; my

co-author wrote a computer code as prescribed by me, and he ran the code and obtained the

data. At first, I had no idea why the mysterious formula held. As “anonymous” said, there

was no “mysterious mental faculty that is used to crack” this problem. Then, four years

later, I suddenly realized the first hint to the right solution and introduced a new concept.

A year later, I performed another trick and gained more insight. Two years later, I found

a “better” trick that supersedes the earlier trick. This example shows that “simple pattern

matching” doesn’t finish a research problem, but tricks, new concepts, and critical thinking

are also needed.

In conclusion, it is unfortunate that some students erroneously think that math and

science are mechanical drudgery because our way of teaching math and science is flawed. We

should remedy this situation since real math and real science are not mechanical drudgery.

Albert Einstein said, “Imagination is more important than knowledge.” Math and science are

not about knowledge, but about imagination, and we must be able to give such an impression

to our students.

Euler’s solution: First, Euler started off by simplifying the problem. See Fig. 2, which

is a simplified picture of Fig. 1. As far as our problem is concerned, Fig. 2 contains all

the information that Fig. 1 contains; Fig. 2 preserves the “connectedness” of Fig. 1. For

example, in Fig. 1, there are two bridges between A and B, two bridges between B and

D, one bridge between B and C, one bridge between A and C, one bridge between C and

D. These are the essential information of Fig. 1, which Fig. 2 also contains. All the other
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Figure 2: a simplifed picture of Fig. 1 Figure 3: an Eulerian path

Figure 4: an Eulerian path starting from A Figure 5: an Eulerian path passing A

Figure 6: an Eulerian path passing A Figure 7: an Eulerian path ending at A

Figure 8: an Eulerian path
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information is not important. For example, it doesn’t matter at all, what shape the bridge

between B and C has, or how long the bridges between A and B are, or the distance between

the two bridges that connect B and D.

Given this, Euler studied what is now called “Eulerian path.” A path that crosses its

edge only once is called “Eulerian path.” He deduced what properties an Eulerian path must

have, and showed that “the seven bridges in Königsberg” does not satisfy this property.

Lets begin with an actual example of a diagram that has an Eulerian path. See Fig. 3.

Suppose the Euler path starts at the node A, and ends at the node A. When the Euler path

starts from A, it is “out-going” from A. See Fig. 4. I denoted this by an arrow on the edge.

Then, the path will return to A, pass A and will leave A again. See Fig. 5. Every time it

passes, it will have one “in-coming” edge to A and one “out-going” edge from A. In our case,

it passes A total two times. See Fig. 6. Here, I denoted the second passing by double arrows.

Finally, when it returns to A, it will have an “in-coming” edge to A. See Fig. 7. Total, there

are 6 edges on A: 3 outgoing edges and 3 incoming edges. We easily see that there should be

an equal number of outgoing edges and incoming edges at the node from which the Eulerian

path starts and to which the Eulerian path ends at the same time. So, there should be an

even number of edges at such a node. How about the other edges? The Eulerian path doesn’t

start or end there. It just passes. So, there must be also an equal number of outgoing edges

and incoming edges for such a node. In other words, there must be an even number of edges

for all the other edges. Summarizing, each node (both node such as A and nodes “passed”)

must have an even number of edges connected to it, if the Eulerian path returns to the same

node from which it started.

Now, consider another Eulerian path. See Fig. 8. In this case, it starts and ends at

different nodes. It starts at A and ends at C. A must have an outgoing edge when the

Eulerian path starts. Then, when it returns to A to pass it, it must have an equal number

of outgoing edges and incoming edges. In total, it must have one more outgoing edges than

incoming edges, because it doesn’t end at A, while it starts at A. This implies that the

number of edges connected to A must be an odd number. (Say the number of incoming

edges at A is n. Then the number of outgoing edges at A is n + 1. If you add n + 1 and

n, it is 2n + 1, which is always an odd number.) Similarly, at C, there should be one more

incoming edges than the outgoing edges, because the Eulerian path didn’t start at C, while

it ends there. Therefore, C must have an odd number of edges. At all the other points,

the Eulerian path just passes it. Thus, they have an equal number of outgoing edges and

incoming edges. Therefore, each of them must have an even number of edges. Summarizing,

if an Eulerian path starts from a node and returns to another node, only these two nodes

must have an odd number of edges, and all the other nodes must have an even number of

edges.

Now, see Fig. 2, the simplified picture of Fig. 1. Given this notice that each node (A,

B, C, D) has an odd number of edges (i.e., bridges) connected to it. In other words, four

nodes have an odd number of edges in this case. As a diagram must have only zero or two
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Figure 9: another representation of Fig. 2 Figure 10: another representation of Fig. 2

nodes that have an odd number edges, there is no Eulerian path for the seven bridges of

Königsberg.

I learned the condition for a diagram to have the Eulerian path in special classes for gifted

students in elementary school. However, I just memorized the condition without learning the

derivation, which is the fun part. I had to prepare for competitions, which never asked such

derivations, but only whether a particular diagram had an Eulerian path. If I could have

taught young myself, I would have done it differently.

A final comment. In the problem of bridges of Königsberg, we have seen that not the

exact shape of the bridges and the island but only their connectedness mattered. For example,

Fig. 9 and Fig. 10 can be other equivalent representations of Fig. 1 or Fig. 2 as far as the

connectedness is concerned. Euler’s solution to this problem gave rise to a new important

concept in mathematics: Topology. In topology, all that matters is not the exact shape, but

the connectedness. Fig. 2, Fig. 9, and Fig. 10 have all the same connectedness. Notice

that to preserve connectedness, you can stretch, twist, bend the lines, but you must not glue

or cut the lines. If the connectedness is preserved during a transformation, we say that the

transformation preserves “topology.” We can also say that Fig. 2, Fig.9 and Fig. 10 have

the same “topology.”

Topology is now a very hugh subject in mathematics. In this example, you see that what

we need to create a new field or subject in mathematics is not boring logical deductions,

but an ingenious way of looking at the same problem. We will talk more about topology

in our article “Topolgy, the Euler characteristic, and the Gauss-Bonnet theorem.” There,

you will also see an example of how different subjects in mathematics connect each other,

unexpectedly.

Problem 1. Suppose that a diagram admits an Eulerian path that starts from a certain

node which it can end (i.e., all nodes have even edges.) Then, show that such a diagram

admits an Eulerian path that can start from any nodes.

(Fig. 1 is adopted from https://commons.wikimedia.org/wiki/File:7_bridges.svg.)
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