Dual space

Let V be a real vector space. Then, consider the following linear map (i.e., linear operator) L.

$$
\begin{equation*}
L: V \rightarrow \mathbb{R} \tag{1}
\end{equation*}
$$

In other words, if you give the linear map a vector in a vector space V, the linear map gives you a real number. The set of all such linear maps is called "dual space" and is denoted by V^{*}. Let's find this dual space. To this end, recall what a linear map is from our earlier article "Matrices and Linear Algebra." It satisfies the following two conditions:

$$
\begin{equation*}
L(c \vec{v})=c L(\vec{v}), \quad L\left(\vec{v}_{1}+\vec{v}_{2}\right)=L\left(\vec{v}_{1}\right)+L\left(\vec{v}_{2}\right) \tag{2}
\end{equation*}
$$

In that article, we have learned that a linear map can be always represented by a matrix. Let's say that V is n-dimensional. Then, our linear map L pops out one number when n numbers (recall that a n-dimensional vector can be uniquely represented by n numbers) are entered. So, we see that L must be $1 \times n$ matrix. We know that $n \times 1$ matrix forms an n-dimensional vector space. In other words, if V is an n-dimensional vector space, its dual space V^{*} is also an n-dimensional vector space.

Maybe, you should think along this way. If V is a ket vector (i.e., $n \times 1$ matrix), V^{*} is a bra vector (i.e., $1 \times n$ matrix). The real number is obtained by their dot-product. Of course, it goes without saying that the dual space of V^{*} is the original vector space V. In other words, $\left(V^{*}\right)^{*}=V$.

A comment. In our later article on general relativity, you will learn that a usual vector (i.e., ket vector) is called just a vector, and a vector that lives in the dual vector space (i.e., bra vector) is called a "covector." Actually, we have already encountered them when we learned Einstein summation convention. An object with upper index such as B^{i} is a vector and an object with lower index such as A_{i} is a covector. They combine together $\left(A_{i} B^{i}\right)$ to give out a number. This is just another expression of dot product.

All I said in this article can be generalized to the case in which V is a complex vector space. The only difference is that, instead of (1), we have the following:

$$
\begin{equation*}
L: V \rightarrow \mathbb{C} \tag{3}
\end{equation*}
$$

Summary

- The set of all linear maps which give you back a number when you give them a vector is called "dual space."
- The dual space of V is denoted by V^{*}. If V is n-dimensional, V^{*} is n-dimensional.
- The pairing of V and V^{*} is exactly what a dot product is.
- $\left(V^{*}\right)^{*}=V$
- If a vector lives in a vector space, a covector lives in its dual space.
- A vector has an upper index as v^{i} and a covector has a lower index as u_{i}. A vector and a covector can be combined together to yield a dot product.

