Eigenvalues and eigenvectors of symmetric matrices and Hermitian matrices

In this article, we will learn very interesting properties of eigenvalues and eigenvectors of symmetric matrices. To this end, let's recall what eigenvalues and eigenvectors are. Given A an $n \times n$ matrix, it is λ_{i} (a number) and e_{i} (an $n \times 1$ matrix) that satisfy the following equation.

$$
\begin{equation*}
A e_{i}=\lambda_{i} e_{i} \tag{1}
\end{equation*}
$$

where i runs from 1 to n. Let me give you an example. If A is given by following:

$$
A=\left(\begin{array}{ccc}
-2 & 4 & -1 \tag{2}\\
-1 & 3 & -1 \\
2 & -2 & 1
\end{array}\right)
$$

we find the following solutions (I will briefly mention how one can find the solutions in my article "Finding eigenvalues and eigenvectors."):

$$
\left(\begin{array}{ccc}
-2 & 4 & -1 \tag{3}\\
-1 & 3 & -1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=1\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

which corresponds to

$$
\begin{gather*}
A e_{1}=1 e_{1} \tag{4}\\
\left(\begin{array}{ccc}
-2 & 4 & -1 \\
-1 & 3 & -1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=2\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \tag{5}
\end{gather*}
$$

which corresponds to

$$
\begin{gather*}
A e_{2}=2 e_{2} \tag{6}\\
\left(\begin{array}{ccc}
-2 & 4 & -1 \\
-1 & 3 & -1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=-1\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \tag{7}
\end{gather*}
$$

which corresponds to

$$
\begin{equation*}
A e_{3}=-1 e_{3} \tag{8}
\end{equation*}
$$

We can express the same equations slightly differently. Let's take the transpose of (1). Then we have:

$$
\begin{align*}
\left(A e_{i}\right)^{T} & =\left(\lambda_{i} e_{i}\right)^{T} \\
\left(e_{i}\right)^{T} A^{T} & =\lambda_{i}\left(e_{i}\right)^{T} \tag{9}
\end{align*}
$$

For example, (5) becomes:

$$
\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 2 \tag{10}\\
4 & 3 & -2 \\
-1 & -1 & 1
\end{array}\right)=2\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)
$$

Now, assume a matrix B is a symmetric matrix, (i.e. $B^{T}=B$) and let's say that v_{i} s are eigenvectors and λ_{i} s are eigenvalues.

Then, from (1), we have

$$
\begin{equation*}
B v_{i}=\lambda_{i} v_{i} \tag{11}
\end{equation*}
$$

On the other hand, from (9), we have:

$$
\begin{equation*}
\left(v_{i}\right)^{T} B^{T}=\lambda_{i}\left(v_{i}\right)^{T} \tag{12}
\end{equation*}
$$

However, as $B^{T}=B$, we have

$$
\begin{equation*}
\left(v_{i}\right)^{T} B=\lambda_{i}\left(v_{i}\right)^{T} \tag{13}
\end{equation*}
$$

Now consider the following quantity:

$$
\begin{equation*}
\left(v_{j}\right)^{T} B v_{i}=\left(v_{j}\right)^{T} \lambda_{i} v_{i}=\lambda_{i}\left(v_{j}\right)^{T} v_{i} \tag{14}
\end{equation*}
$$

which follows from (11) On the other hand, we also have

$$
\begin{equation*}
\left(v_{j}\right)^{T} B v_{i}=\lambda_{j}\left(v_{j}\right)^{T} v_{i} \tag{15}
\end{equation*}
$$

which follows from (13)
Equating the above two, we conclude:

$$
\begin{array}{r}
\lambda_{i}\left(v_{j}\right)^{T} v_{i}=\lambda_{j}\left(v_{j}\right)^{T} v_{i} \\
\left(\lambda_{i}-\lambda_{j}\right)\left(v_{j}\right)^{T} v_{i}=0 \tag{16}
\end{array}
$$

So, if $\lambda_{i} \neq \lambda_{j}$, we have:

$$
\begin{equation*}
\left(v_{j}\right)^{T} v_{i}=0 \tag{17}
\end{equation*}
$$

However, notice that $\left(v_{j}\right)^{T} v_{i}=\vec{v}_{j} \cdot \vec{v}_{i}$ from the definition of dot product. For example, if

$$
v_{1}=\left(\begin{array}{c}
1 \tag{18}\\
2 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
4 \\
0 \\
3
\end{array}\right)
$$

then it follows that

$$
\left(v_{1}\right)^{T} v_{2}=\left(\begin{array}{ccc}
1 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
4 \tag{19}\\
0 \\
3
\end{array}\right)=1 \times 4+2 \times 0+(-1) \times 3=\vec{v}_{1} \cdot \vec{v}_{2}
$$

Therefore, from (17), we have:

$$
\begin{equation*}
\vec{v}_{j} \cdot \vec{v}_{i}=0 \tag{20}
\end{equation*}
$$

In other words, two eigenvectors of a symmetric matrix are orthogonal to each other, if their eigenvalues are different.

Everything presented here can be translated into the case in which the symmetric matrix is replaced by Hermitian matrix. (9) is replaced by following equations.

$$
\begin{align*}
\left(A e_{i}\right)^{\dagger} & =\left(\lambda_{i} e_{i}\right)^{\dagger} \\
\left(e_{i}\right)^{\dagger} A^{\dagger} & =\lambda_{i}^{*}\left(e_{i}\right)^{\dagger} \tag{21}
\end{align*}
$$

Taking similar steps to the ones that led to (16), we obtain:

$$
\begin{array}{r}
\lambda_{i}\left(v_{j}\right)^{\dagger} v_{i}=\lambda_{j}^{*}\left(v_{j}\right)^{\dagger} v_{i} \\
\left(\lambda_{i}-\lambda_{j}^{*}\right)\left(v_{j}\right)^{\dagger} v_{i}=0 \tag{22}
\end{array}
$$

Now, consider the case $j=i$. Then we see that $\lambda_{i}=\lambda_{i}^{*}$ which means that λ_{i} is real. So, we have shown that eigenvalues of Hermitian matrices are always real.

Considering this, we can write the above formula as

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right)\left(v_{j}\right)^{\dagger} v_{i}=0 \tag{23}
\end{equation*}
$$

If $\lambda_{i} \neq \lambda_{j}$. we have:

$$
\begin{equation*}
\left(v_{j}\right)^{\dagger} v_{i}=0 \tag{24}
\end{equation*}
$$

If we define the inner product (also known as dot product) of two complex vectors as follows:

$$
\begin{equation*}
\vec{v}_{j} \cdot \vec{v}_{i}=\left(v_{j}\right)^{\dagger} v_{i} \tag{25}
\end{equation*}
$$

We conclude that two eigenvectors of a Hermitian matrix are orthogonal to each other, if their eigenvalues are different. Notice that the definition of dot product in complex vector case is slightly different from the real one. For example, if you had

$$
\begin{gather*}
v_{1}=\left(\begin{array}{c}
1-i \\
2 \\
-1+i
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
4 \\
0 \\
3-2 i
\end{array}\right) \tag{26}\\
\vec{v}_{1} \cdot \vec{v}_{2} \equiv\left(v_{1}\right)^{\dagger} v_{2}=\left(\begin{array}{c}
1+i, \quad 2, \quad-1-i)\left(\begin{array}{c}
4 \\
0 \\
3-2 i
\end{array}\right) \\
=(1+i) \times 4+2 \times 0+(-1-i) \times(3-2 i)
\end{array}\right.
\end{gather*}
$$

Notice that the dot product is not given by $(1-i) \times 4+2 \times 0+(-1+i) \times(3-2 i)$. We will revisit this issue in my fourth article on quantum mechanics. There, we will also see that the orthogonality of eigenvectors of Hermitian matrix has a very far-reaching significance in quantum mechanics. Additionally, we will express everything in this article in terms of bra-ket notation, introduced in my earlier article. Readers could have left out this article, and read my fourth article on quantum mechanics, and still understand it, but it is good to learn twice.

Problem 1. If A is a Hermitian 2×2 matrix with two distinct eigenvalues, and one of its eigenvector u_{1} is given by the following:

$$
\begin{equation*}
u_{1}=\binom{i}{2} \tag{28}
\end{equation*}
$$

Show that the other eigenvector is given by,

$$
\begin{equation*}
u_{2}=\binom{2}{i} \tag{29}
\end{equation*}
$$

Problem 2. If B is a Hermitian 3×3 matrix with three distinct eigenvalues, and two of its eigenvectors v_{1} and v_{2} are given by the following:

$$
v_{1}=\left(\begin{array}{l}
1 \tag{30}\\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
i \\
3
\end{array}\right)
$$

What is the third eigenvector v_{3} ? (The answer is not unique, so just give me an example of possible answers. ${ }^{1}$)

[^0]
Summary

- The eigenvectors of a Hermitian matrix are orthogonal to each other if their eigenvalues are different.

[^0]: ${ }^{1}$ However, such eigenvectors are always parallel (or anti-parallel) to each other. In other words, two such eigenvectors \vec{v}_{3} and \vec{v}_{3}^{\prime} always satisfy $\vec{v}_{3}^{\prime}=c \vec{v}_{3}$ for a suitable scalar c.

