
Eigenvalues and eigenvectors

Let’s say that we want to calculate the following quantity:

A10x = y (1)

where A is a 2 × 2 matrix and x is a 2 × 1 matrix. For example if A =(
1 2
−1 4

)
and x =

(
1
0

)
, the quantity we want to calculate is the fol-

lowing: (
1 2
−1 4

)10(
1
0

)
(2)

Certainly it would not be easy to calculate this directly as the matrix multi-
plications are complicated. Is there a simpler way? The answer is yes - using
the concept of eigenvectors and eigenvalues, which is the topic of this article
(it should be noted however that this is not merely a tool for calculation; it
has wide applications in science and engineering).

Now, let’s go back to our original problem. Suppose we could find two
2× 1 matrices e1 and e2 that satisfy the following conditions:

Ae1 = λ1e1

Ae2 = λ2e2 (3)

where λ1 and λ2 are simply numbers.
We obtain the following:

A10e1 = A9(Ae1) = A9λ1e1 = λ1A
9e1

= λ1A
8(Ae1) = λ1A8λ1e1 = (λ1)

2A8e1 (4)

Continuing in this way, we obtain:

A10e1 = λ101 e1 (5)

And similarly:

A10e2 = λ102 e2 (6)

Therefore, if our x in formula (1) happens to be like e1 or e2, our job is
very much simplified. We just take the corresponding λ, calculate its tenth
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power, and multiply x by it. What is less obvious is that we can use a similar
trick even if x itself doesn’t happen to be like e1 or e2. Let’s say that we
can express x as a linear combination of e1 and e2 as follows:

x = c1e1 + c2e2 (7)

where c1 and c2 are simply numbers.
We obtain:

A10x = A10(c1e1 + c2e2) = A10c1e1 +A10c2e2 = c1(λ1)
10e1 + c2(λ2)

10e2 (8)

which completes the calculation.
Let me remind you what we had to do. To calculate (1), we had to find

an e1 and e2 that satisfy (3). Then we had to find a c1 and c2 that satisfy
(7). This was our procedure. The point is that the whole calculation gets
simplified if we can find e1 and e2 that satisfy (3), and then write x in terms
of these. e1 and e2 are called eigenvectors and λ1 and λ2 are called (the
corresponding) eigenvalues.

All of this seems abstract, so let’s work an example. Let’s go back
to our example (2) from the beginning of the article. First, let’s find the

eigenvectors and the eigenvalues. Let ei =

(
vi
wi

)
where i is 1 or 2. We

have: (
1 2
−1 4

)(
vi
wi

)
= λi

(
vi
wi

)
(9)

Componentwise, this is:

vi + 2wi = λivi

−vi + 4wi = λiwi

This implies:

(1− λi)vi = −2wi (10)

−vi = (λi − 4)wi (11)

which implies:
(1− λi)(λi − 4) = −2×−1

Solving this equation we get:

λi = 2, 3 (12)

For convenience, and without loss of generality, let’s choose λ1 = 2, λ2 = 3
(the other choice would be λ1 = 3, λ2 = 2). Plugging this to the formula
(10), we get:

e1 =

(
2
1

)
, e2 =

(
1
1

)
(13)
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Of course, we could have chosen e1 to be (4, 2) or (6, 3) instead of (2, 1),
and e2 to be (−1,−1) or (2, 2) instead of (1, 1), but this choice won’t change
the result of the computation, as long as we are consistent.

Now plugging into (7) for our example of (2), we get :

x =

(
1
0

)
= c1

(
2
1

)
+ c2

(
1
1

)
(14)

1 = 2c1 + c2

0 = c1 + c2

Therefore, we get c1 = 1, c2 = −1.
Now we can complete our calculation:

A10x = A10(e1−e2) = 210e1−310e2 =

(
210 × 2− 310 × 1
210 × 1− 310 × 1

)
=

(
−57001
−58025

)
It turns out that an eigenvector with magnitude (called also “norm”)

1 is often useful in physics. In our case, e1 and e2 don’t satisfy such a
condition. Nevertheless, from any eigenvectors, one can always construct
eigenvectors with magnitude 1 by a process called “normalization.” It is
so simple. Just divide the eigenvector by the magnitude of the original
eigenvector. Then, the new eigenvector will have magnitude 1 and it will
still be an eigenvector with same eigenvalue. For example, in our case, e1
has magnitude

√
22 + 12 =

√
5. Then, define the new eigenvector as follows:

e′1 =
e1√

5
=

(
2/
√

5

1/
√

5

)
(15)

The norm is clearly 1, since (2/
√

5)2 + (1/
√

5)2 = 1, and it is still an
eigenvector with eigenvalue 3 since

Ae′1 = A(e1/
√

5) = (Ae1)/
√

5 = 3e1/
√

5 = 3(e1/
√

5) = 3e′1 (16)

Similarly, for the second normalized eigenvector, we have:

e′2 =
1√
2

(
1
1

)
(17)

In general, an n × n matrix has n eigenvalues and n eigenvectors. For
example, given a 4× 4 matrix A, we can find 4 λ’s (i.e. λ1, λ2, λ3, λ4) and 4
e’s (i.e. e1, e2, e3, e4) that satisfy the following equations:

Ae1 = λ1e1

Ae2 = λ2e2

Ae3 = λ3e3

Ae4 = λ4e4
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The eigenvalues and the coefficients of the eigenvectors can be sometimes
complex numbers even when the coefficients of the concerned matrix is real.
Also, in general, these n eigenvectors form the basis of n-dimensional vector
space so that an arbitrary n-dimensional vector can be uniquely expressed
in terms of the linear combination of the eigenvectors.

We will briefly consider how the problem of finding eigenvalues and eigen-
vectors in cases when the dimension considered is more than two in our later
article “Finding eigenvalues and eigenvectors.” There, we will also learn why
an n× n matrix has generally n eigenvalues and n eigenvectors.

Problem 1. What are the eigenvalues of an identity matrix? Show that
any vector is an eigenvector. This fact will be useful when we explain in our
later article “Neutrino oscillation, clarified” why the presence of neutrino
oscillation implies that not all the three masses of neutrinos are same

Problem 2. Explain why eigenvalues and eigenvectors can be only
defined for square matrices (i.e., matrices with the same number of rows
and columns.)

Problem 3. Let’s denote a square matrix A as follows:

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann

 (18)

Show that if at least one of the eigenvalues of the above matrix is 0, then
the following n vectors

A11

A21

· · ·
An1

 ,

A21

A22

· · ·
An2

 , · · · ,

A1n

A2n

· · ·
Ann

 (19)

are linearly dependent. (Hint1)

Summary

• If Aen = λnen for a matrix A, a non-zero vector en, and a number
λn, en is called the “eigenvector” of the matrix A, and λn is called the
eigenvalue of the matrix A (or of the eigenvector en).

1If at least one of the eigenvalues of the matrix A is 0, there exists a non-zero ~v that
satisfies A~v = 0.
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