Electrodynamics in the Lagrangian and the Hamiltonian formulations

What is the Lagrangian and the Hamiltonian of a charged particle in the presence of the electric field, but no magnetic field? It's easy. If the electric potential is ϕ, the potential energy, V is given by $q \phi$ where q is the charge of the particle. Therefore, we have:

$$
\begin{align*}
& L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-q \phi \tag{1}\\
& H=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+q \phi \tag{2}
\end{align*}
$$

In the presence of the magnetic field, it is more complicated. We will guess a formula for the Lagrangian and show that the correct equation of motion is derived from the Lagrangian, thus justifying the formula. We guess:

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+q\left(\dot{x} A_{x}+\dot{y} A_{y}+\dot{z} A_{z}\right)-q \phi \tag{3}
\end{equation*}
$$

Then, we have:

$$
\begin{equation*}
p_{x}=\frac{\partial L}{\partial \dot{x}}=m \dot{x}+q A_{x} \tag{4}
\end{equation*}
$$

and similarly for p_{y} and p_{z}. Then, we have:

$$
\begin{align*}
\dot{p}_{x} & =m \ddot{x}+q \frac{d}{d t} A_{x}=m \ddot{x}+q\left(\frac{\partial A_{x}}{\partial x} \dot{x}+\frac{\partial A_{x}}{\partial y} \dot{y}+\frac{\partial A_{x}}{\partial z} \dot{z}\right) \tag{5}\\
& =\frac{\partial L}{\partial x}=q\left(\frac{\partial A_{x}}{\partial x} \dot{x}+\frac{\partial A_{y}}{\partial x} \dot{y}+\frac{\partial A_{z}}{\partial x} \dot{z}\right)-q \frac{\partial \phi}{\partial x} \tag{6}
\end{align*}
$$

Therefore, we conclude:

$$
\begin{equation*}
m \ddot{x}=q\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \dot{y}+q\left(\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right) \dot{z}-q \frac{\partial \phi}{\partial x} \tag{7}
\end{equation*}
$$

However, remembering that $B=\nabla \times A$ and $E=-\nabla \phi$ we conclude:

$$
\begin{equation*}
m \ddot{x}=q E_{x}+q\left(B_{z} \dot{y}-B_{y} \dot{z}\right) \tag{8}
\end{equation*}
$$

and similarly for $m \ddot{y}$ and $m \ddot{z}$. In conclusion, we obtained the Lorentz force as follows:

$$
\begin{equation*}
m \ddot{\vec{r}}=q \vec{E}+q \dot{\vec{r}} \times \vec{B} \tag{9}
\end{equation*}
$$

where $\vec{r}=(x, y, z)$.

Now, by definition, Hamiltonian is given by:

$$
\begin{align*}
H & =p_{x} \dot{x}+p_{y} \dot{y}+p_{z} \dot{z}-L \\
& =p_{x} \dot{x}+p_{y} \dot{y}+p_{z} \dot{z}-\left(\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+q\left(\dot{x} A_{x}+\dot{y} A_{y}+\dot{z} A_{z}\right)-q \phi\right) \tag{10}
\end{align*}
$$

Now, (4) implies:

$$
\begin{equation*}
\dot{x}=\frac{p_{x}-q A_{x}}{m} \tag{11}
\end{equation*}
$$

and similarly for \dot{y} and \dot{z}. Plugging this into (10), we get:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\left(p_{x}-q A_{x}\right)^{2}+\left(p_{y}-q A_{y}\right)^{2}+\left(p_{z}-q A_{z}\right)^{2}\right)+q \phi \tag{12}
\end{equation*}
$$

which is equal to:

$$
\begin{equation*}
H=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+q \phi \tag{13}
\end{equation*}
$$

which is the total energy (i.e. kinetic energy plus potential energy) of moving charged object. Notice that p 's in (12) is not the "mechanical" momentum given by $m \dot{\vec{r}}$. From (11), it is easy to see that mechanical momentum is given by $\vec{p}-q \vec{A}$.

Summary

- The Hamiltonian of charged object in a vector potential \vec{A} and an electric potential ϕ is given by

$$
H=\frac{1}{2 m}\left(\left(p_{x}-q A_{x}\right)^{2}+\left(p_{y}-q A_{y}\right)^{2}+\left(p_{z}-q A_{z}\right)^{2}\right)+q \phi
$$

Here, $\vec{p}-q \vec{A}$ is the mechanical momentum.

