
Ellipse revisited

As promised in our earlier article “Conic sections,” we re-visit ellipse in this article.

1 Area of an ellipse

Remember that an ellipse is a “squeezed” or “re-scaled” or “stretched” circle, according to

one of our earlier several equivalent definitions of an ellipse. See Fig. 1 and Fig. 2. Fig.

1 is a circle. Its radius is “10,” if we call the spacing between adjacent pink lattice “1.”

In Fig. 2, we rescaled Fig. 1 by stretching the x-coordinate by the ratio 1.4 while leaving

the y-coordinate un-changed. Therefore, the semi-major axis a of the ellipse is 14, while its

semi-minor axis b is 10.

Then, what is the formula for the area of an ellipse with semi-major axis a and semi-minor

axis b? Remember that the area of a circle with radius r is given by πr2. In Fig. 1, the

number of squares inside the circle is the area of the circle. I didn’t count it, but it should

be around 314, as r = 10. (Of course, we can get a more exact value by making the lattice

denser). In Fig. 2, the number of rectangles inside the ellipse remains the same, because we

just stretched Fig. 1; the lattices were stretched as well. However, the area of each rectangle

is now 1.4 (= 1.4 × 1). Therefore, the area of the ellipse must be around 314 × 1.4.

See what we just have done. The area of this ellipse is given by

A = π × 10 × 10 × 1.4 = π × 10 × 14 = πba (1)

In other words, remembering that b = r, and 1.4 = a/r,

A = π × r × r × a

r
= π × b× a = πba (2)

Figure 1: a circle Figure 2: an ellipse
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Figure 3: Problem 1. Figure 4: tangents from A

Problem 1. Using a knife, you sliced a cylinder with radius 8 as in Fig. 3. You can

also see that the vertical displacement in the slicing along the cylinder is 12. If your knife

is not bent, the cross section is an ellipse, because the circle with radius 8 is stretched by a

constant ratio along one direction this way. What is the area of this ellipse? (Hint1)

2 Two foci and ellipse as a stretched circle

In an earlier article, we mentioned that ellipse can be defined by the condition that the sum

of the distances from a point on an ellipse to the two foci is constant. Now, we will show that

a stretched circle, as a section of a cylinder, satisfies this property. Before doing so, we need

to prove a theorem. See Fig. 4. You see a sphere and a point A. You also see four tangents

from A to the sphere. These four tangents touch the sphere at B, C, D, E. What we want

to say is that all the tangents from A to the sphere have the same length. In other words,

AB = AC = AD = AE (3)

Of course, this is true for other tangents from A, which we drew not here. But they will

touch the points denoted by the dotted line.

Problem 2. Let’s say that the radius of the sphere is r and the distance from the center

of the sphere to A is a. Then, calculate the value for AE. (Hint2) Note that your calculation

is valid for all the other tangents. In other words, you will get the same answer for AB, AC,

AD. So, you just proved our assertion. They are the same.

Given this, see Fig. 5. You see a cylinder with radius r and height h. In this cylinder,

two spheres S1, S2, both with radius r are tightly fit. You also see a section of the cylinder.

It touches the lower sphere at the point F1, and the upper sphere at the point F2. In other

words, this section is a tangent plane of both spheres.

Now, recall that this section is an ellipse, because it is a “stretched” circle. What I am

going to show is that the two points F1 and F2 are actually foci. See Fig. 6. All we need to

1Use the Pythagorean theorem to calculate the semi-major axis.
2Use the Pythagorean theorem.
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Figure 5: a cylinder with two spheres Figure 6: AF1 +AF2

Figure 7: Ellipse as a conic section

prove is AF1 + AF2 is constant no matter where we choose A as long as it is on the ellipse.

Now, notice AF1 = AB1, because both AF1 and AB1 are tangents to the sphere S1 from the

same point A. Similarly, AF2 = AB2, as they are tangents to the sphere S2 from the same

point A. Thus, we conclude

AF1 +AF2 = AB1 +AB2 = h (4)

In other words, the sum of the distances from a point on an ellipse to the foci is always

a constant. This completes the proof.

3 Ellipse as a conic section

In this section, you will be invited to prove that an ellipse, as a section of a conic, satisfies

the condition that the sum of the distances to the two foci is always a constant.

Problem 3. See Fig. 7. The figure is self-explanatory. Explain why AF1 = AC1 and

AF2 = AC2. Then, explain why

AF1 +AF2 = h (5)
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Figure 8: an elliptical mirror and two foci Figure 9: θi and θr

Figure 10: the shortest path is the one through P

4 An elliptical mirror

Imagine an elliptical mirror as in Fig. 8. If you shoot light rays from one of the focus of the

ellipse, they will bounce back from the elliptical mirror, and converge at the other focus. I

will explain the reason why in this section.

To explain this, we need to use the fact that the incident angle and the reflected angle are

the same on a mirror, which we proved in our earlier essay “Light ray reflecting on a mirror.”

See Fig. 9. If we shoot the light ray from F1 to P , the incident angle is θi = ∠F1PN . In

the figure, we also drew θr = ∠NPF2. If θr happens to be equal to θi, then a light ray shot

from F1 toward P will bounce off at P and be reflected to F2. Thus, all we need to prove is

θr = θi.

Given this, see Fig. 10. If the semi-major axis is a, we have

F1P + F2P = 2a (6)

Let’s now call two arbitrary points on the tangent that touches P by Q and Q′. As Q and

Q′ lie outside of the ellipse, we necessarily have

F1Q+ F2Q > 2a, F1Q′ + F2Q′ > 2a (7)
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unless they coincide with P .

In other words, as we move Q (or Q′) along the tangent, F1Q+ F2Q is minimum, when

Q is located at P , in which case the value is 2a. Given this, remember from our earlier essay

on Fermat’s principle that such P necessarily satisfies ∠F1PN = ∠F2PN . This completes

the proof.

Final comment. One can prove that a hyperbola defined by a conic section satisfies

the condition that the difference between the distances to the foci is always constant, using

a similar method to the geometric one which we used to prove that an ellipse defined as

a conic section satisfies the condition that the sum of the distances to the foci is always

constant. Another similar geometric method can show that a parabola is indeed a conic

section. However, we will not show the proofs. Interested readers can consult other books.

Summary

• The area of an ellipse with semi-major axis a and semi-minor axis b is given b πab.

• If you shoot light rays from one of the foci of an elliptical mirror, they all converge to

the other focus.

(Fig. 8 is from https://commons.wikimedia.org/wiki/File:Elli-norm-tang-n.svg)
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