
Entropy as a state function

In the last article, we have seen the following equation.

dQ = nCvdT + PdV (1)

Also, in our earlier article “What is entropy? From a macroscopic point of view,” we have

seen the following equation.

dS =
dQ

T
(2)

Combining these two, and using Boyle-Charles law, we obtain:

dS = nCv
dT

T
+

PdV

T
= nCv

dT

T
+ nR

dV

V
(3)

Now, suppose n moles of gas molecules begin from initial state (Pi, Vi, Ti) to the final state

(Pf , Vf , Tf ). (Of course, these variables are redundant since we know PiVi/Ti = PfVf/Tf =

nR) Then, what would be the entropy change during process? Let’s calculate:

∆S =

∫
dS = nCv ln

Tf

Ti
+ nR ln

Vf

Vi
(4)

Notice that the entropy change only depends on the initial state and the final state and

not on the path it was taken from the initial state and the final state. Not sure what I mean?

∆Q =
∫
dQ is actually path dependent while the combination

∫
dQ/T is not. Let me give

you an example that shows that ∆Q is path dependent. Let’s consider two paths, whose

initial states are same, and whose the final states are same. Let’s say that the initial state is

given by (P0, V0, T0) and the final state by (2P0, 2V0, 4T0). Let’s say the first path is given

as follows:

(P0, V0, T0)→ (P0, 2V0, 2T0)→ (2P0, 2V0, 4T0) (5)

where, in the first process, pressure is held constant and in the second process the volume is

held constant. In the first process, we have:

∆Q(first process of path 1) = nCv(2T0 − T0) + P0(2V0 − V0) = nCvT0 + P0V0 (6)

In the second process, we have:

∆Q(second process of path 1) = nCv(4T0 − 2T0) + 0 = 2nCvT0 (7)

where we have used the fact that the work done is zero, as volume was held constant. Adding

these two ∆Qs, the total ∆Q of path 1 is given as follows:

∆Q(path 1) = 3nCV T0 + P0V0 (8)
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Now, consider the second path:

(P0, V0, T0)→ (2P0, V0, 2T0)→ (2P0, 2V0, 4T0) (9)

where, in the first process, volume is held constant and in the second process the pressure is

held constant. In the first process, we have:

∆Q(first process of path 2) = nCv(2T0 − T0) + 0 = nCvT0 (10)

where we have used the fact that the work done is zero, as volume was held constant. In the

second process, we have:

∆Q(second process of path 2) = nCv(4T0 − 2T0) + 2P0(2V0 − V0) = 2nCvT0 + 2P0V0 (11)

Adding these two ∆Qs during the two processes, the total ∆Q of path 2 is given as follows:

∆Q(path 2) = 3nCV T0 + 2P0V0 (12)

We notice that ∆Q(path 1) 6= ∆Q(path 2). ∆Q is not path independent.

Now, let us explain the necessity of the path independence in the change of the entropy.

Recall that we had Boltzmann’s equation S = k lnW in our earlier article “What is com-

bination? What is entropy?” Remember what W was. It was “the number of microstates

consistent with a given macrostate.” More precisely speaking, it is the number of “current”

microstates consistent with a “current” given macrostate. It never depends on the number

of “past” microstates. A function that satisfies such a property is called “state function.”

Therefore, entropy is a state function. Notice that this property forces the path independence

of entropy difference. To calculate entropy, all you need is the current state. Your history

doesn’t matter.

Summary

• Entropy is a state function; to calculate entropy, all you need is the current state. Your

history doesn’t matter.
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