Even permutation, odd permutation, and $\operatorname{det} A^{T}=\operatorname{det} A$

As we introduced in our earlier article, the symmetric group S_{n} is a group of all permutations of a set of n elements. In our earlier articles "Bosons, Fermions, and Pauli's exclusion principle" and "Levi-Civita Symbol," we also learned the concepts of "even permutation" and "odd permutation." In this article, we will deal with even permutation and odd permutation rigorously. We will also prove $\operatorname{det} A^{T}=\operatorname{det} A$.

Problem 1. Let's consider S_{5}. From an earlier article, we know that

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \tag{1}\\
a & b & c & d & e
\end{array}\right)
$$

is an even permutation if $\epsilon_{a b c d e}=1$ and an odd permutation if $\epsilon_{a b c d e}=-1$. It is common to denote an even permutation by $\operatorname{sgn}(\sigma)=1$ and an odd permutation by $\operatorname{sgn}(\sigma)=-1$. Now, let's define a mapping D by $D(\sigma)=$ $\operatorname{sgn}(\sigma)$. Show that D is a (1×1 matrix) representation of S_{5}.

Now, we would like to show that the determinant of the transpose of a matrix is equal to the determinant of the original matrix. In other words, $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$. We will consider a 4×4 matrix as an example. First, recall

$$
\begin{equation*}
\operatorname{det} A=\sum_{i, j, k, l} \epsilon_{i j k l} A_{i 1} A_{j 2} A_{k 3} A_{l 4} \tag{2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\operatorname{det} A^{T}=\sum_{i, j, k, l} \epsilon_{i j k l} A_{1 i} A_{2 j} A_{3 k} A_{4 l} \tag{3}
\end{equation*}
$$

Here, you can easily see that each contribution to the sum is zero if $\epsilon_{i j k l}$ is zero. In other words, i, j, k, and l have to be some permutations of $1,2,3$, and 4 , for to give non-zero contributions to the sum. In other words, there are 4 ! terms in (2), and also 4 ! terms in (3). If each term in (2) and (3) can be matched together and is the same, the sums are also the same.

For this purpose, let's re-express (2) as

$$
\begin{equation*}
\operatorname{det} A=\sum_{\text {all } \sigma} \operatorname{sgn}(\sigma) A_{\sigma(1) 1} A_{\sigma(2) 2} A_{\sigma(3) 3} A_{\sigma(4) 4} \tag{4}
\end{equation*}
$$

and (3) as

$$
\begin{equation*}
\operatorname{det} A^{T}=\sum_{\text {all } \sigma^{\prime}} \operatorname{sgn}\left(\sigma^{\prime}\right) A_{1 \sigma^{\prime}(1)} A_{2 \sigma^{\prime}(2)} A_{3 \sigma^{\prime}(3)} A_{\sigma^{\prime}(4) 4} \tag{5}
\end{equation*}
$$

Given this, we want to match the term that is

$$
\begin{equation*}
A_{\sigma(1) 1} A_{\sigma(2) 2} A_{\sigma(3) 3} A_{\sigma(4) 4}=A_{1 \sigma^{\prime}(1)} A_{2 \sigma^{\prime}(2)} A_{3 \sigma^{\prime}(3)} A_{4 \sigma^{\prime}(4)} \tag{6}
\end{equation*}
$$

In other words,

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \tag{7}\\
\sigma(1) & \sigma(2) & \sigma(3) & \sigma(4)
\end{array}\right)=\left(\begin{array}{cccc}
\sigma^{\prime}(1) & \sigma^{\prime}(2) & \sigma^{\prime}(3) & \sigma^{\prime}(4) \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Problem 2. Show that $\sigma=\sigma^{\prime-1}$. Thus, we can say $\sigma^{-1}=\sigma^{\prime}$.
Problem 3. Show that $\operatorname{sgn}\left(\sigma^{-1}\right)=\operatorname{sgn}(\sigma)$. (Hint ${ }^{1}$) Thus, we can say $\operatorname{sgn}\left(\sigma^{\prime}\right)=\operatorname{sgn}(\sigma)$

Therefore, (6) is promoted to

$$
\begin{equation*}
\operatorname{sgn}(\sigma) A_{\sigma(1) 1} A_{\sigma(2) 2} A_{\sigma(3) 3} A_{\sigma(4) 4}=\operatorname{sgn}\left(\sigma^{\prime}\right) A_{1 \sigma^{\prime}(1)} A_{2 \sigma^{\prime}(2)} A_{3 \sigma^{\prime}(3)} A_{4 \sigma^{\prime}(4)} \tag{8}
\end{equation*}
$$

As all the terms in (2) and (3) are the same, we conclude $\operatorname{det} A^{T}=\operatorname{det} A$.

Summary

- $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$

[^0]
[^0]: ${ }^{1}$ Show first $\operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{-1}\right)=1$ by using the fact that sgn is a representation.

