
What is a gauge theory?

In an earlier article, “A short introduction to quantum mechanics VIII: global gauge

transformation,” we have noted that the observed values in quantum mechanics are invariant

under an overall, constant phase rotation called a “global gauge transformation.” To explore

this idea further, let’s see whether the observed values change if a position-dependent phase

is added to the wave function – that is, whether the observed values are invariant under the

following transformation:

ψ → eiqθ(x)ψ (1)

where θ(x) is a real number that depends on position x, and q is a constant that turns out to

be electric charge. Such a transformation is called a “gauge transformation” or “local gauge

transformation.”

Now, let’s assume that we have a kinetic term in Schrödingers equation; i.e. a term that

involves spacetime derivative(s), such as ∂ψ
∂xµ – which, in short-hand notation, is written ∂µψ

(x0 = t, x1 = x, x2 = y, x3 = z). To make the observed values invariant, the kinetic term

∂µψ must transform in the same way as ψ (If you don’t see why this is true, just accept it

and see where it leads.) In other words, we must have the following:

∂µψ → eiqθ(x)∂µψ (2)

However, (1) doesn’t imply (2) because

∂µ(eiqθ(x)ψ) = iq∂µθ(x)eiqθ(x)ψ + eiqθ(x)∂µψ 6= eiqθ(x)∂µψ (3)

To remedy this situation, we introduce the covariant derivative Dµ, defined as follows:

Dµψ = (∂µ − iqAµ)ψ 1 (4)

Here we have introduced Aµ, which is called a “connection” or a “gauge field.” If Aµ varies

as Aµ → Aµ + ∂µθ(x), while ψ varies as (1), then the extra term iq∂µθ(x) in (3) can be

cancelled. Then, we get

Dµψ → eiqθ(x)Dµψ (5)

So, in Schrödinger’s equation for the momentum operator, we have to introduce a co-

variant derivative instead of an ordinary derivative; a momentum operator with ordinary

derivatives spoils gauge symmetry in Schrödinger’s equation. In other words, with ordinary

1The usual convention is Dµψ = (∂µ + iqAµ)ψ; we use a different definition in the interest of convenience.
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derivatives, (5) is not satisfied, and the observed values are not invariant under (1). Given

this, let’s write Schrödinger’s equation with covariant derivatives. Then we get:

ih̄Dtψ =
(−ih̄Dx)(−ih̄Dx) + (−ih̄Dy)(−ih̄Dy) + (−ih̄Dz)(−ih̄Dz)

2m
ψ (6)

This equation has gauge symmetry, since under a gauge transformation, both sides pick up

the phase factor eiqθ(x) which we then cancel.

The above equation can be rewritten as follows:

(i∂t + qAt)ψ =
(p− qA)2

2m
ψ

i∂tψ = Hψ =

[
(p− qA)2

2m
+ q(−At)

]
ψ (7)

where p is the momentum defined by ordinary derivatives. We have set h̄ = 1 for simplicity;

this is equivalent to re-defining A with an h̄ factor. Notice that the kinetic energy is given

not by p2

2m as usual, but by (p−qA)2

2m . However, if you remember your advanced classical

mechanics or quantum mechanics, you will notice that this is the exact Hamiltonian for a

particle in an electromagnetic field, where (Ax, Ay, Az) is the vector potential ~A, and −At
the electric potential φ. Therefore, we have an interpretation of the connection Aµ as the

electromagnetic potential. Also, one can easily check that the electric field and the magnetic

field are invariant under the gauge transformation. Aµ → Aµ + ∂µθ implies:

φ→ φ− ∂tθ
~A→ ~A+∇θ (8)

which leaves the following intact:

~E = −∇φ− ∂ ~A

∂t
~B = ∇× ~A (9)

In this article, we introduced the idea of a covariant derivative by requiring that the

theory has a gauge invariance or a gauge symmetry (i.e. the theory is invariant under

a gauge transformation). Gauge symmetry is also called “local symmetry” or “local gauge

symmetry.” On the other hand, if the theory is invariant under a global gauge transformation

(i.e., θ(x) in (1) is a constant) we say it has a “global symmetry.”

In our example of a gauge symmetry (1), the gauge group is U(1), as eiqθ(x) is an element

of U(1). U(1) is the group of 1 × 1 unitary matrices; i.e. the set of complex numbers with

magnitude 1.) As this introduction of gauge invariance led to the correct Schrödinger equation

in the presence of an electromagnetic field, we can say that the electromagnetic theory is a

U(1) gauge theory. Because eiqα(x) × eiqβ(x) = eiqβ(x) × eiqα(x), the U(1) group is Abelian

(i.e. AB = BA for all group members A and B). and we call the electromagnetic theory

an Abelian gauge theory. Remarkably, all known physical theories are gauge theories; the

2



electroweak theory has SU(2) × U(1) as a gauge group, and quantum chromodynamics has

SU(3) as a gauge group. (SU(N) is the group of N ×N unitary matrices with determinant

1. Such a matrix is called a “special unitary matrix.”) Since the gauge groups of these

theories are non-Abelian, (AB 6= BA for group members A and B) we call such theories

non-Abelian gauge theories, or Yang-Mills theories – named after the inventors Yang and

Mills who came up with the first non-Abelian gauge theory mathematically in the 1950s.

The standard model unifies electroweak theory and quantum chromodynamics, so its gauge

group is SU(3)× SU(2)×U(1). Nobody knows why all known physical theories have gauge

symmetries. Maybe God knows.

Summary

• Under the (local) gauge transformation of the wave function ψ

ψ → eiqθ(x)ψ (10)

the covariant derivative of ψ transforms as

Dµψ → eiqθ(x)Dµψ

• Such a covariant derivative is of the form

Dµψ = (∂µ − iqAµ)ψ

where Aµ is called a “connection” or a “gauge field.”

• To make Dµψ transform covariantly, under the gauge transformation Aµ transform as

Aµ → Aµ + ∂µφ

• Theory that has the symmetry (10) is called an “Abelian” gauge theory, as the group

eiqθ is U(1), which is Abelian. Maxwell theory is an Abelian gauge theory.
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