
Geodesics in the presence of constant gravitational field

In earlier article “Fermat’s principle and the consistency of physics,” I explained that

the light always takes the path that extremizes the time it took. This is also the case for

general relativity. In general relativity, a particle always takes the path that extremizes the

proper time it took. This path is called “geodesics.” After all, proper time is the time

measured by the particle. In this article, at least in a suitable limit (i.e. small velocity and

weak gravitational field), we will show that this consideration leads to the extremization of

non-relativistic Lagrangian of particles moving. To this end, let’s calculate the proper time

of particles moving with velocity v. We have:

(cδτ)2 = (cδt)2 − (dx2 + dy2 + dz2) = (cδt)2 − (vδt)2 (1)

δτ =
√

1 − v2/c2δt (2)

This relation makes sense, if you think about time dilation. Time goes more slowly for moving

particle than the one for outside observer. Indeed δτ is smaller than δt. When v is much

smaller than c, this amounts to:

δτ ≈
(

1 − 1

2

v2

c2

)
δt (3)

Now, recall that we had the following formula in our earlier article “By how much does

time go more slowly at a lower place.”

∆tA ≈
(

1 +
gh

c2

)
∆tB (4)

Applying this formula to (3), we get:

δτ ≈
(

1 − 1

2

v2

c2

)(
1 +

gh

c2

)
δt (5)

which implies, for gh� c2,

δτ ≈
(

1 − 1

2

v2

c2
+
gh

c2

)
δt (6)

So, if we call the thing in the parenthesis “L0” this is the one that is extremized. Therefore,

we have the following Euler-Lagrange equation:

∂L0

∂q
− d

dt

(
∂L0

∂q̇

)
= 0 (7)

However, the non-relativistic Lagrangian of such a particle is given by following:

L =
1

2
mv2 −mgh (8)
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since this is the kinetic energy subtracted by potential energy in a constant gravitational

field. Therefore, we can re-express L0 as follows:

L0 = 1 − m

c2
L (9)

Plugging this back to (7) we have:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (10)

So, we recover the Euler-Lagrange equation for moving particle in a constant gravitational

field! The extremization of proper time indeed implies the extremization of Lagrangian.

Problem 1. This actually suggests that the relativistic Lagrangian is given by the

proper time up to a multiplicative factor. Recalling that the dimension of Lagrangian is that

of energy, it makes sense if this multiplicative factor is mc2. In other words, the action is

given by

S =

∫
mc2dτ (11)

In this problem, we will consider the case in which there is no gravitational field. Then, the

Lagrangian is given by

L = mc2
√

1 − v2

c2
(12)

Show that the conjugate momentum of the above Lagrangian is the relativistic momentum

of a particle with mass m, and the Hamiltonian of the above Lagrangian is the relativistic

energy of a particle with mass m.

Problem 2. In “Einstein summation convention,” we have seen that a vector can be

represented by an index. For example, ~v can be represented by va, where v1 = vx, v2 = vy,

v3 = vz. A 4-vector can be also represented by an index, but the index runs from 0 to

3, instead of 1 to 3, as the 0th component denotes the time component. For example, the

4-vector xa, which denotes the time and the position, means x0 = t, x1 = x, x2 = y, x3 = z,

if we the natural unit c = 1. Similarly, the 4-momentum pa is given by p0 = E, p1 = px, p
2 =

py, p
3 = pz, again using the natural unit. Given this, show that

pa = m
dxa

dτ
(13)

Summary

• In general relativity, a particle always takes the path that extremizes the proper time

it took.

• In Newtonian limit, one can easily show that such a path extremizes the Newtonian

Lagrangian, L = T − V .

• In the absence of gravitational field, the relativistic action is given by S =
∫
mc2dτ ,

which implies that the relativistic Lagrangian is given by L = mc2
√

1 − v2/c2.
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• The 4-momentum is given by

pa = m
dxa

dτ
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