
What is a group?

See the heart symbol in Fig. 1. It is symmetric. What does it exactly mean that it

is symmetric? See Fig. 2. If you reflect the heart symbol with respect to the dotted line,

the shape remains the same. In other words, the heart symbol is symmetric because it

remains the same under an action.

Figure 1: a heart symbol [1] Figure 2: A heart symbol is symmetric,

because it doesn’t change under reflection

of dotted line. [1]

Let’s see another example of a symbol that is symmetric. See Fig. 3 for a square.

You see that it has more symmetries than the heart symbol. See Fig. 4 for four blue

lines. The square remains the same upon the reflection of each blue line. There are four

possible reflections: s0, s1, s2, s3.

Figure 3: a square Figure 4: A square is symmetric, because

it doesn’t change under reflections

However, reflections are not the only symmetries a square has. See Fig. 5. If you

rotate the square with O as its axis of rotation by 0◦, 90◦, 180◦, 270◦ in a counter-
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clockwise direction the square remains the same. (You may wonder why I included the

rotation by 0◦ here, which seems redundant, but we will see why it is convenient to

include it soon.)

Figure 5: A square is symmetric, because

it doesn’t change under rotations

Figure 6: 90◦ counter clockwise rotation

So, we have a total of 8 actions that do not change the square. 4 reflections and 4

rotations. At this point, you may wonder why I didn’t include the rotation in clockwise

direction, but its net effect is the same as in counter-clockwise direction. Let’s see why

by examining how 90◦ clockwise rotation acts on the square as an example. See Fig. 6.

Under such an action, A goes to D, B goes to A, C goes to B and so on. We can write

it as:

A→ D (1)

B → A (2)

C → B (3)

D → C (4)

The same can be said about 270◦ counter-clockwise rotation.

Actually, one can even make a table on how each of the 8 actions act on a square.

Let’s denote 0◦ counter-clockwise rotation by r0, 90◦ counter-clockwise rotation by r1,

180◦ counter-clockwise rotation by r2, 270◦ counter-clockwise rotation by r3. Then, we

can write (4) as r1(D) = C. In the table below, look for the row that begins with D

(i.e., the last row) and see the r1 column. There you find C.

r0 r1 r2 r3 s0 s1 s2 s3

A A D C B B A D C

B B A D C A D C B

C C B A D D C B A

D D C B A C B A D
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Given this, we will present four properties these 8 actions satisfy.

The first property is called “closure.” If you perform one of the 8 actions, then

perform one of the 8 actions again (the same one or a different one), the square will

remain the same, as each of these two consecutive actions preserves the square. Thus,

we can think of two consecutive actions as one action, which also preserves the square.

For example, rotating 90◦ (r1), then rotating 180◦ (r2) is the same action as rotating

270◦ (r3). In other words,

r2(r1(A)) = r2(D) = B = r3(A) (5)

r2(r1(B)) = r2(A) = C = r3(B) (6)

r2(r1(C)) = r2(B) = D = r3(C) (7)

r2(r1(D)) = r2(C) = A = r3(D) (8)

We can express it as r2 • r1 = r3.

Figure 7: s0 • r1 = s1

Let’s see another example. See Fig. 7. We see that rotating 90◦ counter clockwise

(r0), then reflecting through s0 is the same action as reflecting through s1. Compared

to the first figure, the third figure shows that A and C, which are on the dotted line s1

remain untouched, while B and D are swapped. In other words,

s0(r1(A)) = s1(A) (9)

s0(r1(B)) = s1(B) (10)

s0(r1(C)) = s1(C) (11)

s0(r1(D)) = s1(D) (12)

Thus, we have

s0 • r1 = s1 (13)

Problem 1. Check that r1 • s0 = s3.

Let’s express what we just explained in somewhat mathematical notations. If we

denote the two actions by f and g, it means that there is another action h that satisfies
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h = f • g. Notice that this action h is one among the 8 actions, just like f and g are. It

never happens that such an action h does not exist among the 8 actions.

The second property is called “associativity.” If f , g, and h are in the 8 actions,

then, we have

f • (g • h) = (f • g) • h (14)

This can be understood as follows. Both the expressions on the left-hand side and the

right-hand side mean that you act h, then g, then f . The left-hand side combines the

first step and the second step (i.e, g • h) then perform the third step (i.e., f), while the

right-hand side combines the second step and the third step (i.e., f • g), which you act

after the first step (i.e., f). They should be the same.

Problem 2. Even though this property is obvious, let’s just check (14) for one

example. Show

s1 • (s0 • r1) = (s1 • s0) • r1 (15)

by explicit calculation.

The third property is the existence of “identity element.” There is a single special

action among these 8 actions. Unlike all the other actions, r0 does nothing on A, B, C,

D. Such an action is called “identity” and often denoted as “e.” In our case, we can

write e = r0. Now, notice that performing an action, say, f and doing nothing is the

same thing as just performing the original action f . This can be written as e • f = f .

Similarly, doing nothing and performing an action, say, f is the same thing as just

performing the original action f . In other words, f • e = f . Notice that the identity

element is unique. There is no two actions that satisfy e • f = f .

The final property is the existence of “inverse element.” For each action on the

square, there is another action (either the same one or a different one) that can be

performed to undo the original action. For example, if you rotate the square by 90◦ in

a counter clockwise direction (i.e., r1), it can be undone by 90◦ rotation in a clockwise

direction (i.e., 270◦ rotation in a counter clockwise direction, r3). In other words, first

acting r1 and then acting r3 is the same thing as doing nothing, namely, e. In other

words,

r3 • r1 = e (16)

We call r3, the “inverse” of r1. In a mathematical language, we express this statement

as

r3 = r−1
1 (17)

More generally, for any f among the 8 actions, we always have a unique f−1 that satisfies

f−1 • f = e (18)
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Problem 3. What is the inverse of r3?

Problem 4. What is the inverse of s2? (Hint1)

Now, consider the expression (f • f−1) • f . From the associativity, we have

(f • f−1) • f = f • (f−1 • f) (19)

from (18), we have

(f • f−1) • f = f • e = f (20)

from e • f = f , we see that the expression in the parenthesis must be

f • f−1 = e (21)

Thus, the action that satisfies (18) for f also satisfies (21).

So far, we found that the set of 8 actions on a square (e, r1, r2, r3, s0, s1, s2, s3) satisfy

these four properties, but there are many other sets of actions that satisfy these four

properties. So, such sets deserve a special name. They are called “group.”

Let me put it this way. Mathematicians call any set of such actions that satisfy these

four properties “group.” In other words, this is the definition of group. Now, let me

formerly introduce our friend “group.”

A group G is a set with an operation • that combines any two elements f and g to

form another element, (often called “multiplication”) denoted f • g or fg. To qualify as

a group, the set and operation, (G, •), must satisfy following four requirements known

as the group axiom.

(Closure) If f and g are in G then h = f • g is always in G.

(Associativity) If f , g and h are in G then f • (g • h) = (f • g) • h is always satisfied.

(Identity element) There exists an element e in G such that for every element f in

G, e • f = f • e = f is satisfied.

(Inverse element) For every element f in G, there exists an inverse f−1 such that

f • f−1 = f−1 • f = e

The 8 actions in our example of the symmetry of square is called “D4.” More

generally, the Dihedral group Dn is a group of actions that preserve the n-polygon.

Of course, the Diheral groups are not the only examples of groups. Another good

example of a group is integer with the operation (or “group multiplication”) being ad-

dition. It satisfies the group axiom as follows.

1Reflecting with respect to s2 can be undone by reflecting with respect to s2. In other words, if you

reflect with respect to s2 twice, you get e.
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(Closure) If a and b are integers then a + b is always integer.

(Associativity) If a, b and c are integers, then a + (b + c) = (a + b) + c is always

satisfied.

(Identity element) For any integer a, 0 + a = a+ 0 = a is satisfied. Therefore 0 is the

identity element.

(Inverse element) For any integer a, there exists an inverse −a such that a + (−a) =

(−a) + a = 0

Problem 5. Do even integers with the group multiplication as addition form a

group? How about odd integers?

Now, let’s come back to the general properties of group. In a group G, is the identity

element unique? After all, the identity element axiom only says that there is at least

one identity element. It doesn’t say that there couldn’t be two or three elements that

can serve as the identity element. However, it is easy to show that there is only one

identity element, if G satisfies the four group axioms. Assume there are two identity

elements, say, e1 and e2. Then, we have

f • e1 = f • e2 = f (22)

Then, by the inverse element axiom, there is an inverse element to f . That is f−1. Let’s

apply this inverse element f−1 to both sides. We have,

f−1 • (f • e1) = f−1 • (f • e2) (23)

However, by the associativity axiom, we have

(f−1 • f) • e1 = (f−1 • f) • e2 (24)

e • e1 = e • e2 (25)

e1 = e2 (26)

Therefore, the two identity elements we chosse are actually the same. There is only one

identity element.

Problem 6. Show that for an arbitrary element f of G, there is only one inverse

element. In other words, show that g1 = g2 is satisfied, if both g1 and g2 satsisfy

f • g1 = f • g2 = e (27)

Problem 7. Show that the set of real number with multiplication as group multi-

plication is not a group. Which of the four axiom is violated? (Hint: the third axiom is

not violated if you set the identity element to be 1.) On the other hand, show that the

set of real number without 0 and with multiplication as group multiplication is a group.
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A group is an abelian group if it satisfies the following additional axiom.

(Commutativity) If f , g are in G then f • g = g • f is always satisfied.

For example, integer with the operation being addition is an abelain group, because

a + b = b + a (28)

is always satisfied for any two integers a and b.

A group is called a non-abelian group, if it is not an abelian group.

Problem 8. Is D4 an abelian group or a non-abelian group? (Hint2)

Now, we introduce a new concept. If H, a subset of a group G satisfies the group

axiom, we say H is a “subgroup” of G. For example, it is easy to check that the group

of rotation of a square, i.e., {e, r1, r2, r3} is a subgroup of D4. Another subgroup of D4

is {e, s0}. You can check the closure axiom, and the associativity axiom as follows. The

identity element is obviously satisfied, because e is there, and the inverse element is easy

to check as e−1 = e and s−1
0 = s0 which are both elements of {e, s0}.

To make sure that you understand, let me give you an example of a subset which is

not a subgroup of D4. {e, r1, r2} is not a subgroup, because the inverse of r1, which is

r3 is not in the subset.

Note also that every group G has e and G as its subgroups.

Problem 9. Let H be a subgroup of G. If H is a non-abelian group, is G necessarily

also a non-abelian group? If H is an abelian group, is G necessarily also an abelian

group? Answer and explain your reasoning.

Probelm 10. (Challenging!) D4 has 8 subgroups. Among these, we have seen four:

{e}, D4, {e, r1, r2, r3}, {e, s0}. Can you find the other four? (Hint3)

Summary

• A group G is a set with an operation • that combines any two elements f and g

to form another element, denoted f •g. A group needs to satisfy the group axiom.

• Closure, associativity, the existence of the identity element, the existence of inverse

element form the group axiom.
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