
The ground state energy for helium atom

This article closely follows the famous textbook Introduction to Quantum Mechanics by

David J. Griffiths. We will obtain the approximate ground state energy of helium atom using

perturbation theory.

The helium atom consists of two electrons and one nucleus. Each electron has charge −e
and the nucleus has charge 2e. As the nucleus is much heavier than the two electrons, we

can approximate the actual situation as the nucleus is not moving, and consider the wave

functions of the electrons only. Given this, it is easy to see that the Hamiltonian is given as

follows:

H = − h̄2

2m
(∇2

1 +∇2
2)− ke2

(
2

r1
+

2

r2
− 1

|~r1 − ~r2|

)
(1)

where 1 denotes the first electron and 2 denotes the second electron. You also see that the

last term is the potential energy due to the Coulomb interactions between two electrons. We

will treat this term as perturbation and the other terms as unperturbed Hamiltonian.

In other words, the unperturbed Hamiltonian is given as follows:

H0 = − h̄2

2m
(∇2

1 +∇2
2)− ke2

(
2

r1
+

2

r2

)
(2)

It is an easy exercise to check that the solution to Schrödinger equation for the above unper-

turbed Hamiltonian is given as follows:

ψ(~r1, ~r2) = ψ1(~r1)ψ2(~r2) (3)

where ψ1 is the solution to the Schrödinger equation for the following Hamiltonian:

H1 = − h̄2

2m
∇2

1 −
2ke2

r1
(4)

And, similarly for ψ2. (Problem 1. Check this.)

Also, remember that we are calculating the ground state energy, which means that ψ1

and ψ2 must be also the ground state ones for the respective Hamiltonians. So, what is

the ground state of (4) and its energy? We already obtained the one in our earlier article

“Hydrogen atom,” except for the fact that there we had −ke2/r instead of −2ke2/r1. So, all

we need to do is changing ke2 for 2ke2.

If you correctly solved the problems in “Hydrogen atom,” you must have seen that the

ground state wave function for the hydrogen atom is given as follows:

ψ0 =
1√
πa30

e−r/a0 (5)
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Figure 1: Coordinates for r2

Now, from the formula for Bohr radius in that article, replacing ke2 by 2ke2 is equivalent to

replacing a0 by a0/2. Therefore, we have:

ψ1(~r1) =
2
√

2√
πa30

e−r1/a0 (6)

And similarly for ψ2. Then, what would be the energy for this wave function? From the for-

mula for the Rydberg unit energy in our earlier article “Hydrogen atom,” we see that halving

Bohr radius implies quadrupling the Rydberg unit of energy. This implies the energy for

this wave function is −4Ry. Furthermore, as ψ2 has the same energy, the total unperturbed

energy is given by −8Ry. How about the wave function? Using (3), the unperturbed wave

function is given by:

ψ(~r1, ~r2) =
8

πa30
e−2(r1+r2)/a0 (7)

Remember also that the first order correction to the energy eigenvalue is given by the ex-

pectation value of the perturbed Hamiltonian in the unperturbed state. Therefore, the first

order correction to the ground state energy V is given as follows:

V =

∫
ke2

|~r1 − ~r2|
ψ(~r1, ~r2)ψ∗(~r1, ~r2) d3~r1 d

3~r2

= ke2
(

8

πa30

)2 ∫
e−4(r1+r2)/a0

|~r1 − ~r2|
d3~r1 d

3~r2 (8)

The integration seems daunting, but it can be done by carefully choosing coordinates. See

Fig.1. We will do the ~r2 integration first. You see that the coordinate system is chosen in

such a way that ~r1 is pointing z axis, and θ2 is the angle between ~r1 and ~r2. From the law

of cosines, we have:

|~r1 − ~r2| =
√
r21 + r22 − 2r1r2 cos θ2 (9)

So, we have:

I ≡
∫

e−4r2/a0

|~r1 − ~r2|
d3~r2 =

∫
e−4r2/a0√

r21 + r22 − 2r1r2 cos θ2
r22 sin θ2 dr2dθ2dφ2 (10)
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The φ2 integral is easy as the integrand doesn’t depend on φ2. So, it just has an effect of

multiplying by 2π. The θ2 integral gives:∫ π

0

sin θ2dθ2√
r21 + r22 − 2r1r2 cos θ2

=

√
r21 + r22 − 2r1r2 cos θ

r1r2

∣∣∣π
0

=
1

r1r2

(√
r2! + r22 + 2r1r2 −

√
r2! + r22 − 2r1r2

)

=
1

r1r2
[(r1 + r2)− |r1 − r2|] =

2/r1, if r2 < r1,

2/r2, if r2 > r1
(11)

Therefore, (10) becomes

I = 4π

(
1

r1

∫ r1

0

e−4r2/a0r22 dr2 +

∫ ∞
r1

e−4r2/a0r2 dr2

)
=

πa30
8r1

[
1−

(
1 +

2r1
a0

)
e−4r1/a0

]
(12)

Thus, (8) becomes:

V =
8ke2

πa30

∫ [
1−

(
1 +

2r1
a0

)
e−4r1/a0

]
e−4r1/a0r1 sin θ1 dr1dθ1dφ1 (13)

At this point, if you remember our earlier article on spherical coordinate system, we have:∫ 2π

φ1=0

∫ θ1=π

θ1=0

sin θ1 dθ1dφ1 = 4π (14)

Also, the r1 integral becomes:∫ ∞
0

[
r1e
−4r1/a0 −

(
r1 +

r21
a0

)
e−8r1/a0

]
=

5a20
128

(15)

Therefore,

V =
8ke2

πa30
(4π)

5a20
128

=
5ke2

4a0
=

5

2
R0 (16)

Therefore, for the first-order corrected ground state of Helium atom, we get:

E = −8Ry +
5

2
Ry = −11

2
Ry = −75eV (17)

The actual value is −79 eV. Therefore, we see that the approximation is quite good.

Problem 2. Consider a system given by the following Hamiltonian.

H = − h̄2

2m
(∇2

1 +∇2
2) +

1

2
mω2(r21 + r22)− λ

4
mω2|~r1 − ~r2|2 (18)

Show that upon the following change of variables,

~u ≡ 1√
2

(~r1 + ~r2), ~v ≡ 1√
2

(~r1 − ~r2) (19)

Hamiltonian can be re-written as follows:

H =

[
− h̄2

2m
∇2
u +

1

2
mω2u2

]
+

[
− h̄2

2m
∇2
v +

1

2
(1− λ)mω2v2

]
(20)
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Problem 3. Compute the exact ground state energy for the above system assuming that

1− λ > 0.

Problem 4. Obtain the first-order corrected ground state energy by treating the term

proportional to λ as a perturbation. Compare the answer obtained with the exact answer.

Summary

• We can find the approximate ground state of Helium by treating the Coulomb poten-

tial between each electron and nucleus as unperturbed Hamiltonian and the Coulomb

potential between the two electrons as perturbed Hamiltonian.
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