
The calculation of π, the first part

In elementary school, you learned about π (pronounced as “pie”). It is the ratio of

circumference to diameter of a circle and is approximately given by 3.14. How do we

know this value? According to the explanation in a Korean elementary school textbook,

we can find the value by measuring the circumference of a circle and dividing it by the

diameter. On the other hand, you may have heard that π is known up to trillions of

digits. If mathematicians obtained the value of π by measuring the circumference, would

they be able to obtain such an accurate value? Let’s estimate how accurate π we can

obtain by “measuring” it.

How big a circle can we make? We live on the Earth, so it is very hard to make a

circle bigger than the Earth. The circumference of the Earth is about 40000 km. So,

it’s safe to say that the maximum limit for the size of a circle we can make is around

40000 km, even though it is much smaller in practice.

How accurately can we measure the circumference of a circle with 40000 km (4×107

meter)? It’s hard to measure it more accurately than the size of an atom, which is

about one hundred millionth centimeter (10−10 meter). Therefore, in this way, we can

determine π only up to seventeen digits.

So, this certainly is not the way mathematicians find the value of π. But, I thought

so when I read how the Ancient Greek mathematician Archimedes figured out in the

5th century B.C. that the value of π was

3
10

71
(≈ 3.1408) < π < 3

1

7
(≈ 3.1429). (1)

Figure 1: blue hexagon inscribed in a circle and purple

hexagon circumscribed about a circle
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The correct value is about 3.14159. Let me first explain Archimedes’s method.

Archimedes considered the regular 96-gon inscribed in a circle to calculate the lower

limit of π, and the regular 96-gon circumscribed about a circle to calculate the upper

limit of π. See Fig. 1, if you do not understand the words “inscribe” and “circum-

scribe.” A blue regular hexagon is inscribed in a circle, and a purple regular hexagon

is circumscribed about a circle. Let’s try to find π by using Archimedes’s way, but this

time, by using the regular hexagon, instead of the regular 96-gon.

Let’s say that the radius of the circle is 1. See Fig. 2. Then the inscribed hexagon

consists of six equilateral triangles with each side 1. As each side of the hexagon is 1,

the perimeter of this hexagon is 6. See Fig. 3. In the case of the circumscribed hexagon,

it consists of six equilateral triangles, each of which has a height of 1. As the side of an

equilateral triangle with height 1 is 2/
√
3, the perimeter of the circumscribed hexagon

is
2√
3
× 6 = 4

√
3. (2)

The circumference of the circle is bigger than the perimeter of the inscribed hexagon

(i.e., 6) and smaller than the perimeter of the circumscribed hexagon (i.e., 4
√
3). Thus,

the circumference to diameter ratio is given by

6÷ 2 = 3 < π < 2
√
3(= 4

√
3÷ 2) ≈ 3.46 (3)

which is correct, considering that π is about 3.14.

Figure 2: hexagon inscribed in a circle of

radius 1
Figure 3: hexagon circumscribed about a

circle of radius 1

What Archimedes did was find the perimeter of the inscribed regular 96-gon and

the perimeter of the circumscribed regular 96-gon. The circumference of the circle is

between these two, as was the case with hexagons. So, why did he consider 96-gons

instead of hexagons? Because the more sides a regular polygon has, the closer it is to a

circle. Therefore, we can obtain a value that is closer to π.
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Figure 4: hexagon and dodecagon in-

scribed in a circle

Figure 5: hexagon and dodecagon circum-

scribed about a circle

Actually, it is easy to see this. See Fig. 4 for the comparison of the perimeter of

an inscribed regular dodecagon (a regular polygon with 12 sides) with the perimeter of

an inscribed regular hexagon. The diameter of the circle is 1, which means that the

circumference of the circle is π. From the figure, it is easy to see that

perimeter of the hexagon < perimeter of the dodecagon < π (4)

See Fig. 5 for the comparison of the perimeter of a circumscribed regular dodecagon with

the perimeter of a circumscribed regular hexagon. The diameter and the circumference

are again 1 and π. Then, it is easy to see that

π < perimeter of the dodecagon < perimeter of the hexagon (5)

Combining (4) and (5), we see that the dodecagons give a narrower range for π than

the hexagons do. A similar conclusion can be drawn for the comparison between 2n-

gons and n-gons. Thus, 24(= 12× 2)-gons give narrower range for π than dodecagons,

48(= 24× 2)-gons give narrower range than 24-gons, and finally 96(= 48× 2)-gons give

narrower range than 48-gons.

When I first read that Archimedes had found the perimeters of these two regular

96-gons, I thought that he had measured them. I thought, measuring the sides of the

regular 96-gons is perhaps easier than measuring the circumference of a circle. No, he

hadn’t. He obtained them by calculation, just as we obtained the perimeters of the

two regular hexagons without measuring them. Archimedes found formulas to calculate

the perimeters of inscribed and circumscribed regular 2n-gons from the ones of n-gons.

Understanding these formulas is not extremely hard. As any smart modern teenager who

knows basic geometry, and understand the Pythagorean theorem can understand these

formulas, we will explain them in the second part of this essay. Anyhow, Archimedes

could thus obtain the perimeter of regular 12-gons, 24-gons, 48-gons, 96-gons.

3



In the 5th century, about 900 years after Archimedes, by considering the regular

24576-gon, the Chinese mathematician Zu Chongzhi correctly obtained a value of π

that was between 3.1415926 and 3.1415927. If you double the number 96, eight times

(i.e., or double the number 6, twelve times), you get 24576. In other words, the method

Zu used was similar to Archimedes’s method.

In the 15th century, the Indian mathematician Madhava made a breakthrough in

calculating π, even though his method was not perhaps known in Europe before it was

rediscovered there in the 17th century. The calculation of π was now much easier and

faster. Madhava derived the following two relations:

π = 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
+ · · ·

)
(6)

π =
√
12

(
1− 1

3 · 31
+

1

5 · 32
− 1

7 · 33
+

1

9 · 34
+ · · ·

)
(7)

By calculating the first 21 terms of (7), Madhava obtained a value of π that is correct

to 11 decimal places.

Problem 1. Read our article “Convergence and divergence of series,” and explain

why, for each of the series (6) and (7), the correct value π falls between the calculation

up to the n-th term and the (n + 1)-th term. Then, show that, if one uses the same

number of terms, (7) yields a far more accurate value than (6). If you can, estimate

roughly how many terms we need to add to obtain a value of π correct up to 10 digits,

respectively for (6) and for (7).

Now, there was no more need to use the regular polygons to calculate π, because

such a method is inefficient, inaccurate and time-consuming. Later, many formulas that

converge much more quickly have been discovered. For example, in the 18th century,

John Machin used the following formula

π

4
=

4

5

(
1− 1

3 · 52
+

1

5 · 54
− 1

7 · 56
+

1

9 · 58
+ · · ·

)
−
(

1

239
− 1

3 · 2393
+

1

5 · 2395
− 1

7 · 2397
+

1

9 · 2399
+ · · ·

)
(8)

to calculate π up to 100 digits.

In the early 20th century, Srinivasa Ramanujan discovered the following formula,

which converges very quickly.

1

π
=

2
√
2

9801

∞∑
k=0

(4k)!(1103 + 26390k)

(k!)43964k
(9)

It computes a further eight decimal digits with each term. In 1988, Chudnovsky brothers

discovered the following formula, which converges faster than Ramanujan’s one. This
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formula was used to calculate π over trillion digits.

1

π
=

1

426880
√
10005

∞∑
k=0

(6k)!(13591409 + 545140134k)

(3k)!(k!)3(−640320)3k
(10)

There are some formulas that are not as quickly converging as these ones, but are

beautiful. For example,

π = 3 +
12

6 +
32

6 +
52

6 +
. . .

(11)

π =
4

1 +
12

3 +
22

5 +
32

7 +
. . .

(12)

In our earlier article, we mentioned that
√
2 is irrational. It goes without saying that

π is irrational as well. Otherwise, the exact value would have been known, without ever

needing to calculate π up to more digits. In 1761, Johann Heinrich Lambert proved that

π was irrational. Since then, several other proofs have been discovered.

Two comments. First comment. In this essay, I didn’t assume that you already

knew trigonometric functions. But, if you knew trigonometric functions, there would

have been many more things that I could talk about. For example, you could better

understand how (6) and (7) were derived. This, I postpone to the second part of this

essay.

Second comment. In 1621, Willebrord Snellius (known as “Snell” in English) ob-

tained π correct up to seven digits, using 96-gons. Now, remember that Archimedes

used the same 96-gons to obtain π correct only up to three digits (3.14). How could

Snellius obtain such a more accurate value? I will also explain this in the second part

of this essay.

5


