
Hydrogen atom

Heisenberg and his collaborators came up with a correct theory of quan-
tummechanics called “matrix mechanics” in 1925. The next year Schrödinger
came up with “wave mechanics” also a correct theory of quantum mechanics,
equivalent to matrix mechanics, but with a different approach. Schrödinger
showed that his wave mechanics was correct by solving his Schrödinger equa-
tion for hydrogen atom and showing that the result coincides with experi-
ments. This is what we will do in this article.

First, note that in 3d, Schrödinger equation can be expressed as follows:

h̄2

2m
∇2ψ + V (x, y, z)ψ = Eψ (1)

where Laplacian “∇2” is defined as follows:
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In the spherical coordinate, it can be shown that Laplacian can be expressed
as follows:
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For a derivation, see M. Boas, Mathematical Methods in the Physical Sci-
ences, Chapter 10, section 9. Therefore, Schrödinger equation seems to
become:
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(4)
where we assumed that the potential only depends on r. Actually, this is
the whole point of solving problems in spherical coordinate. If V depends
on θ, ϕ, there is no advantage in using spherical coordinate as we will see.
Given this, let’s look for solutions of following form:

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) (5)

Plugging this, we obtain:
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(6)
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Dividing the both-hand sides by RY/r2 and rearranging, we obtain:
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Notice that the left-hand side is the function of θ and ϕ only, while the
right-hand side is the function of r only. As the left-hand side is equal to
the right-hand side we conclude that the both-hand sides should be merely a
constant, which never depends on θ, ϕ and r. Therefore, we can separately
solve the differential equations for the left-hand side and the right-hand side.

Given this, notice that the left-hand side of (7) is exactly negative one
times the angular momentum squared operator we encountered in our earlier
article “Spherical harmonics.” So, Y is actually spherical harmonics.

Thus, the left-hand side becomes −l(l + 1). Plugging this back in, with
V (r) = −ke2/r, we obtain
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Before solving this Schrödinger equation, we will think about its physical
interpretation. To this end, we will heuristically drive the above Schrödinger
equation by considering its classical analog.

Recall that in our earlier article “Planet’s motion around the Sun,” we
changed the three-dimensional problem to one-dimensional problem by using
the fact that angular momentum is conserved. We reproduce our earlier
formula here for convenience:

E =
1

2
mṙ2 +

L2

2mr2
− GMm

r
(9)

The energy of hydrogen atom, which consists of a proton and an electron,
is very similar to the system composed by the Sun and a planet, since
both Coulomb force and gravitational force are inversely proportional to
the square of distance. Replacing the gravitational potential energy to the
Coulomb analog, the 1-dimensional effective Hamiltonian of hydrogen atom
is given as follows:

H =
p2r
2m

+
L2

2mr2
− ke2

r
(10)

where pr is the radial momentum, andm is the mass of the electron (precisely
speaking, the reduced mass of the electron and the proton.) Considering that
L2 is quantized as h̄2ℓ(ℓ+ 1), Schrödinger equation becomes:[

p2r
2m

+
h̄2ℓ(ℓ+ 1)

2mr2
− ke2

r

]
ψ = Eψ (11)
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As we had ψ(r, θ, ϕ) = R(r)Y (θ, ϕ), we may just want to write[
p2r
2m

+
h̄2ℓ(ℓ+ 1)

2mr2
− ke2

r

]
R(r) = ER(r) (12)

as there is no θ and ϕ dependence in (11)
Anyhow, to heuristically derive the correct Schrödinger equation, we

need to know how pr can be expressed. Since we know that px is given by
−ih̄ ∂

∂x , we can guess pr = −ih̄ ∂
∂r . However, this turns out not to be the

case, as pr can be shown not to be Hermitian. To explain this point, let me
digress into the wave function in 3d space.

Recall that in 1d, the inner product between two vectors |ψ1⟩ and |ψ2⟩
is given as follows:

⟨ψ2|ψ1⟩ =
∫
dx⟨ψ2|x⟩⟨x|ψ1⟩ =

∫
dxψ∗

2(x)ψ1(x) (13)

By analogy, it is easy to see that the following must be satisfied in 3d:

⟨ψ2|ψ1⟩ =
∫ ∫ ∫

dx dy dz ψ∗
2(x, y, z)ψ1(x, y, z) (14)

In spherical coordinate, dx dy dz the volume form for 3d Cartesian coor-
dinate must be appropriately replaced by the spherical coordinate analog,
as follows:
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∫ ∫ ∫

r2 sin θdr dθ dϕψ∗
2(r, θ, ϕ)ψ1(r, θ, ψ) (15)

Now, let’s check whether pr0 = −ih̄ ∂
∂r is Hermitian. If we use the no-

tation ψ1(r, θ, ϕ) = R1(r)Y
m
l (θ, ϕ) and ψ2(r, θ, ϕ) = R2(r)Y

m
l (θ, ϕ) with the

following fact, ∫ ∫
Y m∗
l (θ, ϕ)Y m

l (θ, ϕ) sin θdθdϕ = 1 (16)

we have

⟨ψ2|ψ1⟩ =
∫
r2dr R∗(r2)R(r1) (17)
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Therefore, we see that −ih̄ ∂
∂r is not Hermitian as (18) is not equal to (19).

So, −ih̄ ∂
∂r can’t be pr. Moreover, if pr were indeed −ih̄ ∂

∂r , (11) would have
been [

− h̄2

2m

∂2ψ

∂r2
+
h̄2ℓ(ℓ+ 1)

2mr2
− ke2

r

]
R(r) = ER(r) (20)

which doesn’t coincide with (8).
So, why is −ih̄ ∂

∂r not Hermitian, while px = −ih̄ ∂
∂x is Hermitian? If you

think about it, it’s because r2 factor in the inner product (17). In case of px,
such factor is not present in the definition of the inner product in the Hilbert
space of wave functions living in the 1-dimensional Cartesian coordinate.

So, how can we fix this problem? If we “get rid of” the r2 factor, we can
do it. Let’s define u(r) by the following formula:

u(r) = rR(r) (21)

Then, (17) is given by

⟨ψ2|ψ1⟩ =
∫
dr u∗(r2)u(r1) (22)

where the r2 factor is now absent. Given this, if we now say pr = −ih̄ ∂
∂r

acts on u(r) instead of R(r), we have

⟨ψ2|pr0|ψ1⟩ = −ih̄
∫
dr

(
u∗2
∂u1
∂r

)
(23)

⟨ψ2|p†r0|ψ1⟩ = ih̄

∫
dr

(
u1
∂u∗2
∂r

)
(24)

where we can see that pr = −ih̄ ∂
∂r acts on u(r) as a Hermitian operator.

Therefore, as long as pr acts on u(r), R(r) in (20) must be replaced by u(r),
which implies [

− h̄2

2m

∂2ψ

∂r2
+
h̄2ℓ(ℓ+ 1)

2mr2
− ke2

r

]
u(r) = Eu(r) (25)

Actually, if you plug in u(r) = rR(r), this equation coincides with (8).
Now, let’s solve this equation. (25) implies,(

− ∂2

∂r2
+
ℓ(ℓ+ 1)

r2
− 2m

h̄2
ke2

r
− 2mE

h̄2

)
u = 0 (26)

By being careful that E is negative since we are considering the case
that electron is bound by the proton (i.e roughly speaking, orbiting around
the proton), let’s introduce the following notation:

h̄2κ2

2m
= −E, ρ = 2κr (27)
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a0 =
h̄2

mke2
, Ry =

h̄2

2ma20
(28)

λ2 =

(
1

κa0

)2

=
Ry

−E
(29)

Here, Ry is called the Rydberg unit of energy and a0 is called the Bohr
radius. Then, the above equation is simplified as follows:

d2u

dρ2
− ℓ(ℓ+ 1)

ρ2
u+

(
λ

ρ
− 1

4

)
u = 0 (30)

For large ρ, this equation reduces to:

d2u

dρ2
− u

4
= 0 (31)

which implies
u ∼ Ae−ρ/2 +Beρ/2 (32)

Given this, notice that u must not diverge for large ρ. Otherwise, it would
imply that electrons orbiting inside hydrogen atom would be strongly dis-
tributed for the regions infinitely far away from the proton, the nucleus of
hydrogen atom, which is non-sense. Therefore, we set B = 0, so

u ∼ e−ρ/2 (ρ→ ∞) (33)

when ρ is very small, (30) reduces to:

d2u

dρ2
− ℓ(ℓ+ 1)

ρ2
u = 0 (34)

To solve this equation, let’s try a solution u = ρq, then we have:

q(q − 1)ρq−2 − ℓ(ℓ+ 1)ρq−2 = 0 (35)

which implies q = −ℓ, ℓ+ 1. Therefore, we have:

u ∼ Aρ−ℓ +Bρℓ+1 (36)

As u cannot be infinity when r = 0, we must set A = 0. Therefore, we have

u ∼ ρℓ+1 (ρ→ 0) (37)

With these two asymptotic forms, we are ready to solve (30) through a
polynomial expansion as follows. Solution in the following form

u(ρ) = e−ρ/2ρℓ+1F (ρ) (38)
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F (ρ) =

∞∑
i=0

Ciρ
i (39)

with F growing more slowly than an exponential function satisfy (33) and
(37). Plugging (38) to (30), we obtain (Problem 1.):[

ρ
d2

dρ2
+ (2ℓ+ 2− ρ)

d

dρ
− (ℓ+ 1− λ)

]
F (ρ) = 0 (40)

Plugging (39) into the above equation and equating coefficients of equal
powers in ρ yields (Problem 2.):

Ci+1 =
(i+ ℓ+ 1)− λ

(i+ 1)(i+ 2ℓ+ 2)
Ci (41)

In the limit that i→ ∞, this relation reduces to

Ci+1 ∼
Ci

i
(42)

Now, notice that this is also the ratio of coefficients obtained from the fol-
lowing expansion:

eρ =
∑

Ciρ
i =

∑ ρi

i!
(43)

Ci+1

Ci
=

i!

(i+ 1)!
=

1

i+ 1
∼ 1

i
(44)

Therefore, for large ρ, we have F (ρ) ∼ eρ which implies:

u(ρ) ∼ e−ρ/2ρℓ+1eρ = eρ/2ρℓ+1 (45)

which diverges for large ρ, which doesn’t make sense, as we mentioned ear-
lier.

To make sense, the recursion relation (41) must terminate by vanishing
at some finite value of i, which we denote imax. By looking at the numerator
of (41), we see that this is possible, if

imax + ℓ+ 1 = λ (46)

In other words, if this equation is satisfied F is finite since Taylor expan-
sion terminates at imax power of ρ, which in turn implies u is also finite.
Since imax and ℓ are integer, we see that λ is also an integer, which we call
“principal quantum number” and denote by n as follows:

n = imax + l + 1 (47)

Given this, using (29) we conclude:

En = −Ry

n2
(48)
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This is exactly the formula found by Rydberg.
Now, let’s think about what ℓ can be if the electron in an hydrogen

atom is in state n. Let’s look at state n = 1 first. (47) shows that the only
way this can happen is when ℓ = 0 since imax can’t be negative. Therefore
when n = 1 there is no orbital angular momentum for the electron. This
contradicts Bohr’s model in which n = 1 state has angular momentum h̄
which is nonzero. This shows that Bohr’s derivation of Rydberg formula
was a “fluke,” even though it played an important role for the construction
of correct quantum theory.

For other n as well, the possible values for l can be easily obtained from
(47). The result is:

ℓ = 0, 1, 2 . . . , n− 2, n− 1 (49)

Furthermore, if you remember our earlier article “Angular momentum
in quantum mechanics,” we have:

m = −ℓ, − ℓ+ 1, . . . , ℓ− 1, ℓ (50)

Also, we know that an electron can have spin up and spin down. Let’s
call this s. For example, s = 1/2 for spin up, and s = −1/2 spin down.

Summarizing, an arbitrary electron orbiting inside hydrogen atom can
have certain n, ℓ, m, s. These numbers are called quantum numbers. You
may be familiar with this if you learned what is called “orbital” in chem-
istry. The same structure of quantum numbers exists for atoms other than
the hydrogen atom as well. However, what is different is that the energy of
the electrons can be different if ℓ is different even if n is same. Remember
that in our hydrogen atom case (48) only depends only on n and not ℓ.
(However, even in hydrogen atom, the energy depends on l if one consid-
ers relativistic effect, but this effect is very tiny.) This is due to the fact
that there are multiple numbers of electrons in non-hydrogenic atoms; no-
tice that Schrödinger equation must contain extra terms for the Coulomb
force between electrons, which change the eigenvalues for the energy matrix.
Anyhow, we cannot solve Schrödinger equation for such atoms analytically;
we can only do it numerically, with an aid of supercomputer. Many chemists
use supercomputers to solve Schrödinger equation to find out the properties
of atoms and molecules. Maybe more so than physicists.

At this moment, a comment on Pauli’s exclusion principle is appropri-
ate. If you remember our earlier article on bosons and fermions, you will
know that two fermions cannot occupy the same state. This is true for elec-
trons orbiting inside atoms as an electron is a fermion. In other words, two
electrons cannot have all the same n, ℓ, m, s.

Let’s examine its consequences. How many states are there given n?
When n = 1, we call it “K shell.” There are two states in K shell. n = 1, ℓ =
0, m = 0, s = 1/2 and n = 1, ℓ = 0, m = 0, s = −1/2. Therefore, there
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can be no more than two electrons in K shell because of Pauli’s exclusion
principle. How many electrons can be in n = 2 called “L shell?” 8 electrons.
You can check this yourself. (Problem 3.)

So, a total of 8 states. It actually turns out atoms are more chemically
less reactive if shells they have are completely filled. For example, Helium,
which has two electrons, can fill K shell. Neon, which has ten electrons,
can fill both K shell and L shell. It is really amazing that all the properties
of atoms and molecules can be reduced to a simple law called “quantum
mechanics.” (Remember our first article “A short introduction to the history
of physics, and string theory as a ‘Theory of Everything’ ”)

Pauli received the Nobel Prize in Physics 1945 for Pauli’s exclusion
priniciple, which he deserved it. Before coming up with Pauli’s exclusion
principle, he first introduced the fourth quantum number s. He showed
that two-foldedness (Zweifachheit) of an electron, which is not classically
explainable, can explain the atomic spectra. Others before him introduced
their own fourth quantum numbers to explain the atomic spectra, but they
didn’t perfectly fit, as Pauli’s one did.

Problem 4. Find the relation between the Rydberg unit of energy and
the Rydberg constant introduced in our earlier article “Rydberg formula.”

Problem 5. Find the normalized wave function for the ground state
(i.e. n = 1) and calculate the probability that an electron in the ground
state will be found at position r < a0. (Hint

1)
Now, let’s switch gear and ask a question. Why was the wave function of

the form (5) the solution to the Schrödinger equation? Was it a coincidence?
No. Let me explain the reason why. To this end, remember that the angular
momentum is preserved in our case, as there is rotational symmetry. Upon
rotation, the Coulomb potential doesn’t change, as the distance to the center
doesn’t change upon rotation. This should ring a bell regarding our earlier
claim that the whole point of using the spherical coordinate is that the
potential doesn’t depend on the angular direction θ and ϕ. Also, upon the
rotation, the kinetic energy doesn’t change either, as the kinetic energy is
same whether one measures it in a system S or in a system S′ rotated from
the system S.

Actually, we can say the same thing a little bit more mathematically;
the angular momentum commutes with the Hamiltonian. Let’s check the
potential term first. The Coulomb potential is given by −ke2/r. Then, one
can easily check

[Lx,−
ke2

r
] = [Ly,−

ke2

r
] = [Lz,−

ke2

r
] = 0 (51)

as the Coulomb potential doesn’t depend on θ and ϕ. Remember that Lx,
Ly and Lz can be expressed only in terms of θ and ϕ completely without r.

1When l = 0 LxY = LyY = LzY = 0 which implies Y is a constant that doesn’t
depend on θ and ϕ.
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Now, let’s check the kinetic term. We can easily check (Problem 6.)

[Lx, P
2
x + P 2

y + P 2
z ] = 0 (52)

Similarly, [Ly, P
2
x + P 2

y + P 2
z ] = [Lz, P

2
x + P 2

y + P 2
z ] = 0. Thus, we get

[Lx, H] = [Ly, H] = [Lz, H] = 0 (53)

where

H =
P 2
x + P 2

y + P 2
z

2m
− ke2

r
(54)

From (53), we conclude

[L2, H] = [L2
x + L2

y + L2
z, H] = 0 (55)

Therefore, L2 and H are simultaneously diagonizable. Thus, we can express
the eigenfunction of Hamiltonian in the form of (5), as Y (θ, ϕ) as well as
R(r)Y (θ, ϕ) are the eigenfunctions of L2.

Let me conclude this article with a comment on the spherical harmonics.
First, I will introduce the term “homogeneous polynomial of degree ℓ.” It
is defined by

p(cr⃗) = clp(r⃗) (56)

Of course, if r⃗ = (x, y, z) then, such a polynomial can be expressed as

p(x, y, z) =
∑

a+b+c=ℓ

Aabcx
aybzc (57)

Now, I will show that rlY m
l is a homogeneous polynomial of degree ℓ. To

this end, let’s try to solve Laplace equation ∇2ψ = 0, in spherical coordinate
system (3). As before, if we write ψ(r, θ, ϕ) = R(r)Y (θ, ϕ), we have

d

dr

(
r2
dR(r)

dr

)
= ℓ(ℓ+ 1)R(r) (58)

The solution is given by

R(r) = Arℓ +
B

rℓ+1
(59)

Let’s now consider the solution which does not diverge at r = 0. So, B = 0.
Thus, we can write

∇2
(
rℓY m

ℓ (θ, ϕ)
)
= 0 (60)

Now, notice that rℓY m
ℓ (θ, ϕ) satisfies the property (56).

Let’s show that it also satisfies (57). This also means that a, b, c there are
neither non-integers nor negative. Now, recall that Y 0

l (θ, ϕ) is the degree ℓ
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polynomial of cos θ = z/r. If ℓ is even, this polynomial has only even power.
Thus, it can be written as something like

aℓz
ℓ + aℓ−2z

ℓ−2r2 + · · ·+ a0r
ℓ (61)

as r2 = x2 + y2 + z2, the above polynomial can be expressed in the form of
(57). A similar analysis can be performed for odd-ℓ.

Now, we can act L+ and L− on rℓY 0
ℓ (θ, ϕ) to obtain other rℓY m

ℓ (θ, ϕ).
As L+ and L− act by differentiating with respect to the positions such as
x, y, z, and then multiplying the positions x, y, z, they cannot change the
condition ℓ = a + b + c. Nor can they introduce negative exponents or
fractional exponents.

In conclusion, we see that rℓY m
ℓ is a homogeneous polynomial of degree

ℓ and is harmonic (i.e., satisfies ∇2ψ = 0). Actually, one can even show that
there are exactly 2ℓ+1 lineraly independent such polynomials, just like the
number of possible m for Y m

ℓ . We will not show the proof, except for ℓ = 2.
When ℓ = 2, we have 5 following linearly independent polynomials:

xy, yz, zx, x2 − y2, x2 − z2 (62)

They satisfy the Laplace equation ∇2ψ = 0. y2 − z2 doesn’t count as it is a
linear combination of x2 − y2 and x2 − z2.

Summary

� If you solve the Schrödinger equation for hydrogen atom, the radial
part and the angular part are completely separated. It’s because the
angular momentum commutes with the Hamiltonian.

� The energy of the hydrogen atom is given by En = −Ry

n2
. Ry is the

Rydberg constant, and n is the principal quantum number, which is a
positive integer.

� Given n, ℓ ranges from 0, 1, 2, · · · , n− 1 where ℓ denotes the quantum
number for the orbital angular momentum (i.e. the orbital angular
momentum is given by

√
ℓ(ℓ+ 1)h̄.)

� Given ℓ, m ranges from −ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ, where m denotes the
quantum number for the Lz.

� An electron can have either spin up (s = 1/2) or spin down (s = −1/2).

� Pauli’s exclusion principle says that two fermions cannot occupy the
same state. Therefore, two electrons in a same hydrogen cannot have
all the same n, ℓ, m, s.

10


