Infinite-dimensional vector

So far, we have only considered vectors in finite-dimensional vector space. However, we will see that we need to consider vectors in infinite-dimensional vector space in quantum mechanics. Therefore, we will introduce infinitedimensional vectors in this article.

Recall how a vector in a finite-dimensional vector space can be represented. We need n numbers to represent a vector in n-dimensional vector space. For example, a vector \vec{v} is often represented by v_{i}, where i runs from 1 to n. Here, v_{i} denotes the i th component of \vec{v}.

In infinite-dimensional vector space, a vector \vec{v} is represented by $v(x)$, where x can be any number between $-\infty$ and ∞. Here, x plays a role, which i plays in finite-dimensional space. In the finite-dimensional case, the dimension of the vector space was n, because i can have only n values, 1 to n. In the infinite-dimensional case, the dimension of the vector space is infinity, because x can have infinite values, any number between the negative infinity and the positive infinity. You may want to think $v(x)$ as the " x th" component of \vec{v}. The only difference from the finite-dimensional case is that this x can be any number such as $\pi, \sqrt{2}$ and -0.334 , not just a natural number from 1 to n.

With vectors, we can perform addition, scalar multiplication and in many cases, scalar product. ${ }^{1}$ Let's see how they can be done for infinitedimensional vector space case.

First, let's begin with vector addition. In finite-dimensional vector case, we can add two vectors by adding their components. For example, if we have $\vec{u}+\vec{v}=\vec{w}$, the components of \vec{w} can be obtained by

$$
\begin{equation*}
u_{i}+v_{i}=w_{i} \tag{1}
\end{equation*}
$$

Similarly, in infinite-dimensional vector case, if we have $\vec{u}+\vec{v}=\vec{w}, \vec{w}$ can be obtained by

$$
\begin{equation*}
u(x)+v(x)=w(x) \tag{2}
\end{equation*}
$$

Second, multiplication by a scalar. $c \vec{u}=\vec{t}$, for a scalar c, corresponds to

$$
\begin{equation*}
c u_{i}=t_{i} \tag{3}
\end{equation*}
$$

[^0]Similarly, in infinite-dimensional vector case, $c \vec{u}=\vec{t}$ corresponds to

$$
\begin{equation*}
c u(x)=t(x) \tag{4}
\end{equation*}
$$

Finally, scalar product. In finite-dimensional case, we have

$$
\begin{equation*}
\vec{u} \cdot \vec{v}=\sum_{i} u_{i} v_{i} \tag{5}
\end{equation*}
$$

where we see that we have to sum over i. Recall that in infinite-dimensional case, x corresponds to i in finite-dimensional case. Thus, we have to "sum" over x, but "sum" in infinite-dimensional case is integration. Therefore, we have to integrate over x instead. Thus, we obtain

$$
\begin{equation*}
\vec{u} \cdot \vec{v}=\int_{-\infty}^{\infty} u(x) v(x) d x \tag{6}
\end{equation*}
$$

Actually, it is very easy to check that the infinite dimensional vector we introduced here satisfies the following eight conditions which any vector must satisfy by definition.

- 1) Vector addition must be associative. This condition is satisfied for $u(x), v(x)$, and $w(x)$ because $u(x)+(v(x)+w(x))=(u(x)+v(x))+$ $w(x)$.
- 2) Vector addition must be commutative. This condition is satisfied because $u(x)+v(x)=v(x)+u(x)$.
- 3) Vector addition must have an identity element. This condition is satisfied because $u(x)+0=u(x)$, where 0 denotes a constant function 0 for all x.
- 4) Vector addition must have inverse elements. This condition is satisfied because $u(x)+-u(x)=0$, where $-u(x)$ is the additive inverse of $u(x)$.
- 5) Distributivity must hold for scalar multiplication over vector addition. This condition is satisfied because $a(u(x)+v(x))=a u(x)+a v(x)$.
- 6) Distributivity must hold for scalar multiplication over field addition. This condition is satisfied because $(a+b) u(x)=a u(x)+b u(x)$.
- 7) Scalar multiplication must be compatible with multiplication in the field of scalars. This condition is satisfied because $a(b u(x))=(a b) u(x)$.
- 8) Scalar multiplication must have an identity element. This condition is satisfied because $1 u(x)=u(x)$.

Now, let's slightly change our focus. If we have vectors, we can consider a function from vector to vector. If such a function is linear, we call it a linear operator or a matrix. As in finite-dimensional case, we can consider such linear operators in infinite-dimensional case.

Surprisingly, we will see that multiplication by x and differentiation with respect to x are both linear operators (or matrices).

Let me explain. By definition, a linear operator (or matrix) L must satisfy the following two conditions:

$$
\begin{gathered}
L(x+y)=L(x)+L(y) \\
L(a x)=a L(x)
\end{gathered}
$$

Multiplication by x satisfies the above conditions because $x(u(x)+v(x))=$ $x u(x)+x v(x)$ and $x(a u(x))=a x u(x)$. Differentiation with respect to x satisfies the above conditions because

$$
\frac{\partial(u(x)+v(x))}{\partial x}=\frac{\partial u(x)}{\partial x}+\frac{\partial v(x)}{\partial x}
$$

and

$$
\frac{\partial(a u(x))}{\partial x}=a \frac{\partial u(x)}{\partial x}
$$

Therefore, multiplication by x and differentiation with respect to x are linear operators (or matrices).

In case of the finite-dimensional vector space, we learned that matrix multiplication is not generally commutative, i.e., it doesn't satisfy $A B=$ $B A$. In other words, the following two expressions

$$
\begin{align*}
& \vec{v} \xrightarrow{A} A \vec{v} \xrightarrow{B} B A \vec{v} \tag{7}\\
& \vec{v} \xrightarrow{B} B \vec{v} \xrightarrow{A} A B \vec{v} \tag{8}
\end{align*}
$$

are not the same in general.
Actually, it's easy to check that the linear operators, multiplication by x and differentiation with respect to x do not commute. Let's see this.

$$
\begin{align*}
& v(x) \xrightarrow{x} x v(x) \xrightarrow{\frac{\partial}{\partial x}} \frac{\partial(x v(x))}{\partial x} \tag{9}\\
& v(x) \xrightarrow{\frac{\partial}{\partial x}} \frac{\partial v(x)}{\partial x} \xrightarrow{x} x \frac{\partial v(x)}{\partial x} \tag{10}
\end{align*}
$$

Problem 1. Let's call the linear operator that multiplies by x, A and the linear operator that differentiates with respect to x, B. Then, show that $A B-B A=-I$, where I is the identity operator.

Finally, we will introduce a notation. In this article, we expressed vectors only by the components. But of course, we can denote vectors by the components with basis. For example, if $\vec{e}_{1}, \vec{e}_{2}, \cdots, \vec{e}_{n}$ is the basis, we have

$$
\begin{equation*}
\vec{v}=\sum_{i=1}^{n} v_{i} \vec{e}_{i} \tag{11}
\end{equation*}
$$

Here, we see that i is the label that denotes each basis \vec{e}_{i} and v_{i} s are the components for \vec{v}.

Similarly, an infinite-dimensional vector \vec{u} can be regarded as the following vector:

$$
\begin{equation*}
\vec{u}=\int_{-\infty}^{\infty} d x u(x)|x\rangle \tag{12}
\end{equation*}
$$

Here we see that x is the label that denotes each basis $|x\rangle$ and $u(x)$ is the "component" for \vec{u}. Also, as x can be any value between $-\infty$ and ∞, we have integration instead of the sum as in (11). We see indeed that the vector space here is infinite-dimensional, as there are infinitely many values for x which label the basis. We will talk more about the notation $|x\rangle$ in our later article on Dirac's bra-ket notation.

Summary

- The dimension of a vector space can be infinite-dimensional.
- As much as u_{i} is the i th component for \vec{u}, in infinte-dimensional case, $v(x)$ can be regarded as the " x th" component for \vec{v}. x can be any value between $-\infty$ and ∞, thus the vector space is infinite-dimensional.
- $\vec{u}+\vec{v}=\vec{w}$ means $u(x)+v(x)=w(x)$.
- As much as $\vec{u} \cdot \vec{v}=\sum_{i} u_{i} v_{i}$, we have

$$
\vec{u} \cdot \vec{v}=\int_{-\infty}^{\infty} u(x) v(x) d x
$$

- Multiplication by x and differentiation with respect to x are linear operators (i.e. matrices) because they satisfy the requirement of linearity.

[^0]: ${ }^{1}$ The definition of vector does not require the existence of scalar product. But, usually, one can endow scalar product to vectors.

