
Infinite-dimensional vector

So far, we have only considered vectors in finite-dimensional vector space.
However, we will see that we need to consider vectors in infinite-dimensional
vector space in quantum mechanics. Therefore, we will introduce infinite-
dimensional vectors in this article.

Recall how a vector in a finite-dimensional vector space can be repre-
sented. We need n numbers to represent a vector in n-dimensional vector
space. For example, a vector v⃗ is often represented by vi, where i runs from
1 to n. Here, vi denotes the ith component of v⃗.

In infinite-dimensional vector space, a vector v⃗ is represented by v(x),
where x can be any number between −∞ and ∞. Here, x plays a role,
which i plays in finite-dimensional space. In the finite-dimensional case, the
dimension of the vector space was n, because i can have only n values, 1
to n. In the infinite-dimensional case, the dimension of the vector space is
infinity, because x can have infinite values, any number between the negative
infinity and the positive infinity. You may want to think v(x) as the “xth”
component of v⃗. The only difference from the finite-dimensional case is that
this x can be any number such as π,

√
2 and −0.334, not just a natural

number from 1 to n.
With vectors, we can perform addition, scalar multiplication and in

many cases, scalar product.1 Let’s see how they can be done for infinite-
dimensional vector space case.

First, let’s begin with vector addition. In finite-dimensional vector case,
we can add two vectors by adding their components. For example, if we
have u⃗+ v⃗ = w⃗, the components of w⃗ can be obtained by

ui + vi = wi. (1)

Similarly, in infinite-dimensional vector case, if we have u⃗ + v⃗ = w⃗, w⃗ can
be obtained by

u(x) + v(x) = w(x). (2)

Second, multiplication by a scalar. cu⃗ = t⃗, for a scalar c, corresponds to

cui = ti. (3)

1The definition of vector does not require the existence of scalar product. But, usually,
one can endow scalar product to vectors.
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Similarly, in infinite-dimensional vector case, cu⃗ = t⃗ corresponds to

cu(x) = t(x). (4)

Finally, scalar product. In finite-dimensional case, we have

u⃗ · v⃗ =
∑
i

uivi. (5)

where we see that we have to sum over i. Recall that in infinite-dimensional
case, x corresponds to i in finite-dimensional case. Thus, we have to “sum”
over x, but “sum” in infinite-dimensional case is integration. Therefore, we
have to integrate over x instead. Thus, we obtain

u⃗ · v⃗ =

∫ ∞

−∞
u(x)v(x)dx (6)

Actually, it is very easy to check that the infinite dimensional vector
we introduced here satisfies the following eight conditions which any vector
must satisfy by definition.

� 1) Vector addition must be associative. This condition is satisfied for
u(x), v(x), and w(x) because u(x) + (v(x) + w(x)) = (u(x) + v(x)) +
w(x).

� 2) Vector addition must be commutative. This condition is satisfied
because u(x) + v(x) = v(x) + u(x).

� 3) Vector addition must have an identity element. This condition is
satisfied because u(x)+0 = u(x), where 0 denotes a constant function
0 for all x.

� 4) Vector addition must have inverse elements. This condition is sat-
isfied because u(x) + −u(x) = 0, where −u(x) is the additive inverse
of u(x).

� 5) Distributivity must hold for scalar multiplication over vector addi-
tion. This condition is satisfied because a(u(x)+v(x)) = au(x)+av(x).

� 6) Distributivity must hold for scalar multiplication over field addition.
This condition is satisfied because (a+ b)u(x) = au(x) + bu(x).

� 7) Scalar multiplication must be compatible with multiplication in the
field of scalars. This condition is satisfied because a(bu(x)) = (ab)u(x).

� 8) Scalar multiplication must have an identity element. This condition
is satisfied because 1u(x) = u(x).
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Now, let’s slightly change our focus. If we have vectors, we can consider
a function from vector to vector. If such a function is linear, we call it a
linear operator or a matrix. As in finite-dimensional case, we can consider
such linear operators in infinite-dimensional case.

Surprisingly, we will see that multiplication by x and differentiation with
respect to x are both linear operators (or matrices).

Let me explain. By definition, a linear operator (or matrix) L must
satisfy the following two conditions:

L(x+ y) = L(x) + L(y)

L(ax) = aL(x)

Multiplication by x satisfies the above conditions because x(u(x)+v(x)) =
xu(x)+xv(x) and x(au(x)) = axu(x). Differentiation with respect to x sat-
isfies the above conditions because

∂(u(x) + v(x))

∂x
=

∂u(x)

∂x
+

∂v(x)

∂x

and
∂(au(x))

∂x
= a

∂u(x)

∂x

Therefore, multiplication by x and differentiation with respect to x are
linear operators (or matrices).

In case of the finite-dimensional vector space, we learned that matrix
multiplication is not generally commutative, i.e., it doesn’t satisfy AB =
BA. In other words, the following two expressions

v⃗
A−→ Av⃗

B−→ BAv⃗ (7)

v⃗
B−→ Bv⃗

A−→ ABv⃗ (8)

are not the same in general.
Actually, it’s easy to check that the linear operators, multiplication by

x and differentiation with respect to x do not commute. Let’s see this.

v(x)
x−→ xv(x)

∂
∂x−−→ ∂(xv(x))

∂x
(9)

v(x)
∂
∂x−−→ ∂v(x)

∂x

x−→ x
∂v(x)

∂x
(10)

Problem 1. Let’s call the linear operator that multiplies by x, A and
the linear operator that differentiates with respect to x, B. Then, show that
AB −BA = −I, where I is the identity operator.
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Finally, we will introduce a notation. In this article, we expressed vec-
tors only by the components. But of course, we can denote vectors by the
components with basis. For example, if e⃗1, e⃗2, · · · , e⃗n is the basis, we have

v⃗ =
n∑

i=1

vie⃗i (11)

Here, we see that i is the label that denotes each basis e⃗i and vis are the
components for v⃗.

Similarly, an infinite-dimensional vector u⃗ can be regarded as the follow-
ing vector:

u⃗ =

∫ ∞

−∞
dxu(x)|x⟩ (12)

Here we see that x is the label that denotes each basis |x⟩ and u(x) is the
“component” for u⃗. Also, as x can be any value between −∞ and ∞, we
have integration instead of the sum as in (11). We see indeed that the vector
space here is infinite-dimensional, as there are infinitely many values for x
which label the basis. We will talk more about the notation |x⟩ in our later
article on Dirac’s bra-ket notation.

Summary

� The dimension of a vector space can be infinite-dimensional.

� As much as ui is the ith component for u⃗, in infinte-dimensional case,
v(x) can be regarded as the “xth” component for v⃗. x can be any value
between −∞ and ∞, thus the vector space is infinite-dimensional.

� u⃗+ v⃗ = w⃗ means u(x) + v(x) = w(x).

� As much as u⃗ · v⃗ =
∑

i uivi, we have

u⃗ · v⃗ =

∫ ∞

−∞
u(x)v(x)dx

� Multiplication by x and differentiation with respect to x are linear
operators (i.e. matrices) because they satisfy the requirement of lin-
earity.
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