Infinite-dimensional vector

So far, we have only considered vectors in finite-dimensional vector space.
However, we will see that we need to consider vectors in infinite-dimensional
vector space in quantum mechanics. Therefore, we will introduce infinite-
dimensional vectors in this article.

Recall how a vector in a finite-dimensional vector space can be repre-
sented. We need n numbers to represent a vector in n-dimensional vector
space. For example, a vector ¥ is often represented by v;, where i runs from
1 to n. Here, v; denotes the ith component of ¥.

In infinite-dimensional vector space, a vector ¥ is represented by v(z),
where x can be any number between —oo and oco. Here, z plays a role,
which ¢ plays in finite-dimensional space. In the finite-dimensional case, the
dimension of the vector space was n, because ¢ can have only n values, 1
to m. In the infinite-dimensional case, the dimension of the vector space is
infinity, because x can have infinite values, any number between the negative
infinity and the positive infinity. You may want to think v(z) as the “zth”
component of ¥. The only difference from the finite-dimensional case is that
this = can be any number such as 7, v/2 and —0.334, not just a natural
number from 1 to n.

With vectors, we can perform addition, scalar multiplication and in
many cases, scalar product.! Let’s see how they can be done for infinite-
dimensional vector space case.

First, let’s begin with vector addition. In finite-dimensional vector case,
we can add two vectors by adding their components. For example, if we
have @ + ¥ = W, the components of W can be obtained by

u; + v; = w;. (1)

Similarly, in infinite-dimensional vector case, if we have i + ¥ = W, W can
be obtained by
u(x) + v(z) = w(x). (2)

Second, multiplication by a scalar. ¢@@ = ¢, for a scalar ¢, corresponds to

cu; = t;. (3)

!The definition of vector does not require the existence of scalar product. But, usually,
one can endow scalar product to vectors.



Similarly, in infinite-dimensional vector case, ¢l = t corresponds to
cu(z) = t(x). (4)

Finally, scalar product. In finite-dimensional case, we have
U-U= Zuzvz (5)
i

where we see that we have to sum over . Recall that in infinite-dimensional
case, x corresponds to 7 in finite-dimensional case. Thus, we have to “sum”
over x, but “sum” in infinite-dimensional case is integration. Therefore, we
have to integrate over x instead. Thus, we obtain

i 5= /OO w(@)o(z)dz (6)

Actually, it is very easy to check that the infinite dimensional vector
we introduced here satisfies the following eight conditions which any vector
must satisfy by definition.

e 1) Vector addition must be associative. This condition is satisfied for
u(x), v(z), and w(z) because u(z) + (v(z) + w(x)) = (u(z) + v(z)) +
w(x).

e 2) Vector addition must be commutative. This condition is satisfied
because u(x) + v(z) = v(z) + u(z).

e 3) Vector addition must have an identity element. This condition is
satisfied because u(x)+ 0 = u(z), where 0 denotes a constant function
0 for all z.

e 4) Vector addition must have inverse elements. This condition is sat-
isfied because u(x) + —u(z) = 0, where —u(x) is the additive inverse
of u(x).

¢ 5) Distributivity must hold for scalar multiplication over vector addi-
tion. This condition is satisfied because a(u(x)+v(z)) = au(z)+av(x).

e () Distributivity must hold for scalar multiplication over field addition.
This condition is satisfied because (a + b)u(x) = au(z) + bu(z).

e 7) Scalar multiplication must be compatible with multiplication in the
field of scalars. This condition is satisfied because a(bu(x)) = (ab)u(x).

e 8) Scalar multiplication must have an identity element. This condition
is satisfied because lu(x) = u(z).



Now, let’s slightly change our focus. If we have vectors, we can consider
a function from vector to vector. If such a function is linear, we call it a
linear operator or a matrix. As in finite-dimensional case, we can consider
such linear operators in infinite-dimensional case.

Surprisingly, we will see that multiplication by x and differentiation with
respect to x are both linear operators (or matrices).

Let me explain. By definition, a linear operator (or matrix) L must
satisfy the following two conditions:

L(z +y) = L(z) + L(y)

L(azx) = aL(x)

Multiplication by x satisfies the above conditions because x(u(z)+v(x)) =
zu(z)+zv(z) and z(au(x)) = azu(x). Differentiation with respect to x sat-
isfies the above conditions because

I(u(zx) +v(z)) _ ou(x) n ov(z)
Ox Ox Ox

and

d(au(x)) Ou(x)
ox “or
Therefore, multiplication by = and differentiation with respect to x are
linear operators (or matrices).
In case of the finite-dimensional vector space, we learned that matrix
multiplication is not generally commutative, i.e., it doesn’t satisfy AB =
BA. In other words, the following two expressions

74 Av 2 BAv (7)
72 By & ABY (8)

are not the same in general.
Actually, it’s easy to check that the linear operators, multiplication by
x and differentiation with respect to  do not commute. Let’s see this.

v(z) 5 zv(z) i ('9(1:(;}3(:93)) (9)

o(x) i Ov(x) iﬂpav(m)
15)

T ox (10)

Problem 1. Let’s call the linear operator that multiplies by x, A and
the linear operator that differentiates with respect to x, B. Then, show that
AB — BA = —1I, where [ is the identity operator.



Finally, we will introduce a notation. In this article, we expressed vec-
tors only by the components. But of course, we can denote vectors by the
components with basis. For example, if €1, €5, - -« , €, is the basis, we have

n
7= v (11)
=1

Here, we see that 7 is the label that denotes each basis €; and v;s are the
components for 7.
Similarly, an infinite-dimensional vector « can be regarded as the follow-
ing vector:
oo
U= / dx u(z)|z) (12)
—0o0
Here we see that x is the label that denotes each basis |x) and wu(zx) is the
“component” for #. Also, as & can be any value between —oo and oo, we
have integration instead of the sum as in (11). We see indeed that the vector
space here is infinite-dimensional, as there are infinitely many values for x
which label the basis. We will talk more about the notation |z) in our later
article on Dirac’s bra-ket notation.

Summary

e The dimension of a vector space can be infinite-dimensional.

e As much as u; is the ith component for #, in infinte-dimensional case,
v(x) can be regarded as the “xth” component for ¥. x can be any value
between —oo and oo, thus the vector space is infinite-dimensional.

e U+ ¥ = means u(x) + v(z) = w(x).

e Asmuch as @ - =), u;v;, we have

e Multiplication by x and differentiation with respect to x are linear
operators (i.e. matrices) because they satisfy the requirement of lin-
earity.



