Intermediate value theorem

Intermediate value theorem is a theorem about continuous functions. Let's say $f(x)$ is a function continuous at the interval $a \leq x \leq b$. Then, the theorem says that for any u between the values $f(a)$ and $f(b)$ (i.e. if $f(a) \leq f(b)$, then $f(a) \leq u \leq f(b)$, if $f(a) \geq f(b)$, then $f(a) \geq u \geq f(b))$ there is at least one $a \leq c \leq b$ that satisfies $u=f(c)$. This sounds somewhat abstract without a graph, so see Fig. 1. $f(x)$ is continuous for the interval $a \leq x \leq b$. In other words, the graph is connected (i.e. not "broken") in this interval. Therefore, there is no way that $f(x)$ can go from $(a, f(a))$ to ($b, f(b)$) without crossing the line $y=u$, if u is between $f(a)$ and $f(b)$. You indeed see that there is a $a \leq c \leq b$ that satisfies $u=f(c)$.

In Fig. 2, you see an example of a discontinuous function $y=\tan x$, and how intermediate value theorem doesn't apply to a discontinuous function. Here, we are considering the interval $\pi / 4 \leq x \leq 3 \pi / 4$. The graph is discontinuous at $x=\pi / 2$. Therefore, even though the value $1 / 2$ is between $\tan \frac{\pi}{4}=1$ and $\tan \frac{3 \pi}{4}=-1$, there is no need for the existence of $\pi / 4 \leq x \leq 3 \pi / 4$ that satisfies $\tan x=\frac{1}{2}$. In the graph, you actually see that $\tan x=\frac{1}{2}$ doesn't have the solution for the interval $\pi / 4 \leq x \leq 3 \pi / 4$.

We will not bother to prove this theorem, because it is intuitively clear. If you are interested in the proof, look up Wikipedia.

Figure 1: $y=f(x), y=u$

Figure 2: $y=\tan x, y=\frac{1}{2}$

Summary

- Let's say $f(x)$ is a function continuous at the interval $a \leq x \leq b$. Then, the theorem says that for any u between the values $f(a)$ and $f(b)$ there is at least one $a \leq c \leq b$ that satisfies $u=f(c)$.

