
Logarithm

Logarithm is a very important concept in mathematics and physics. Logarithm (also

called “log”) is defined as follows:

if ax = b, we have : loga b = x (1)

where we call a a “base.” Now, let us give you some examples:

log10 1000 = 3 ( as 103 = 1000), log4 2 =
1

2
( as 4

1
2 = 2) (2)

Now here are some properties of logs. First, notice the following:

ab × ac = ab+c (3)

If we say ab = f , ac = g, we have ab+c = fg, which implies:

b = loga f, c = loga g, b+ c = loga(fg) (4)

Therefore we conclude:

loga f + loga g = loga(fg) (5)

Let’s derive another identity for logarithms using this formula. If we let fg = h, g = h/f ,

we have:

loga f + loga

h

f
= loga h (6)

which in turn implies:

loga h− loga f = loga

h

f
(7)

Problem 1. Show the following:

loga(p2) = 2 loga p, loga(p3) = 3 loga p

Do you see the pattern? In general, loga p
n = n loga p. Let’s rigorously prove this. Notice

the following

(am)n = amn (8)

If we let am = p, we have:

loga p = m, loga(pn) = mn (9)

which implies:

loga(pn) = n loga p (10)
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In engineering, a logarithm with base 10, called a “common logarithm,” is useful. Many

even go on to omit the marker for the base in such a case. For example, log 10000 = 4,

log 0.01 = −2.

In math and physics, it turns out that a logarithm with a base a number called “e”

is useful. In mathematics, e is as important number as π and given by 2.718· · ·. We call

a logarithm with base e a “natural log” and denote it by ln, after the French “logarithme

naturel.” For example, ln e = loge e = 1. Some mathematicians and physicists use the symbol

log in place of ln. For example log e = 1. Therefore it can sometimes be confusing whether

log means log10 or ln.

In any case, why the number e is special and often used as the base for logarithms is

explained in my article “Exponential functions and natural logs.”

Some historical remarks. John Napier, a Scottish mathematician and astronomer, who

published “Description of the Marvelous Canon of Logarithms” (in Latin) in 1614 is regarded

as the first discoverer of the logarithms. This discovery was very useful at the time, when

scientific calculators were not available, because logarithms can change multiplication into

addition, which is much easier than multiplication. It was especially useful for astronomy,

because complicated multiplications were common. Let me explain what I mean by changing

multiplication into addition. Suppose you want to calculate 3.456789× 1.234567. Then, you

can look up a table that gives the logarithms of numbers. By looking at a table that lists

number and its logarithms, you can find

log 3.456789 ≈ 0.538673, log 1.234567 ≈ 0.091515 (11)

Then, from the property of logarithms, we know

log(3.456789 × 1.234567) = log 3.456789 + log 1.234567 (12)

≈ 0.538673 + 0.091515 = 0.630188

Now, you look at the table again to find which number has 0.630188 as its logarithms. It is

4.267642. The actual value for the multiplication 3.456789 × 1.234567 ≈ 4.267638, which is

very close to the obtained value, using Napier’s method.

Actually, Napier’s table had 10 million entries, which took him 20 years of calculation.

In fact, he used 0.9999999 as his base, instead of 10. Notice that the choose of base doesn’t

affect the result of multiplication as (5), which we used in (12), is satisfied for any base a.

Anyhow, when I learned that Napier had used logarithms to do multiplication, I naturally

assumed that he used 10 as base, as it is the most common base besides e, which had not yet

been discovered, and wondered how he would have been able to find the logarithms with base

10 by hand, as the result would be almost always non-integers. Now, I know that he used

0.9999999 as base, which often results in a big enough number as an answer, which enables

us to approximate the answer as the closest integer, without much big error. For example,

log0.9999999 2.55 = −9360933.129 · · · (13)

2



which is not that much different from the nearest integer −9360933. Indeed, we have

0.9999999−9360933 = 2.549999968 · · · (14)

which is very close to the oringal value 2.55. We already talked about Napier’s method in

more details in our earlier essay “How to turn a complicated multiplication into a simple

addition.”

Napier’s method for multiplication is often used (in a slightly different form, but essentially

using the same principle) as late as 1970s, when my uncle, an engineering student then, used

“slide rules.” A slide rule is a type of ruler, which enables you to multiply numbers using

Napier’s method. Below you see an illustration that shows how a slide rule works. Figure

out yourself how a slide rule works from the illustration.

Problem 2.

log4 1 =?, log2 16 =?, log10 0.1 =?, log3

1

9
=?, log100 10 =?

Problem 3. (Hint1)

log8 4 =?, log3 8 + log3

9

8
=?, log1/2 4 =?, e2 ln 3 =?, e3 ln 2 =?

Problem 4. Prove the following. (Hint2)

loga b = loga c · logc b (15)

Notice that this implies ln b = ln 10 · log10 b ≈ 2.303 log10 b

Problem 5. Prove the following.(Hint3) Notice that this is useful when calculating the

values for loga b where a is neither 10 or e, since most calculators provide log values only for

these two numbers.

loga b =
log10 b

log10 a
=

ln b

ln a
(16)

Problem 6. Let’s say that a population of a certain country grows by 7 percent every

year. Find out how long it takes for it to double, using the logarithm button in a scientific

calculator such as the one provided by Microsoft Windows. If you do this correctly, you

should get about 10 years. Repeat the calculation for the annual growth rates of 5 percent,

3 percent, 2 percent and 1 percent. If you do this correctly, you should get about 14 years,

1For the first one, try to use (8) with n the answer we want, a = 2, am = 8 and amn = 4.
2Let ax = b, ay = c and cz = b, and try to derive x = yz
3This is the solution to ax = b. Obtain the solution by taking log10 or ln on both-hand sides. You will

need to use (10).
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23 years, 35 years, 70 years respectively. Notice that the annual growth rate multiplied

by the years that takes the population to double is roughly given by 70. For example,

7 × 10 ≈ 5 × 14 ≈ 3 × 23 ≈ 2 × 35 ≈ 1 × 70 ≈ 70. This is known as the “law of seventy,”

which I learned from an economics textbook. Using this law, one can easily calculate how

long a quantity with a fixed annual growth rate takes to double. For example, if an annual

growth rate is 4 percent, it would take about 18(≈ 70 ÷ 4) years to double. If an annual

growth rate is 0.5 percent, it would take about 140(= 70÷0.5) years to double. However, the

law of seventy does not hold for big annual growth rates. For example, if the annual growth

rate is 100 percent, it takes exactly one year to double, not 0.7(= 70 ÷ 100) years to double.

Anyhow, in our later article “Exponential functions and natural logs,” you will be invited to

prove the law of seventy. You will need to use the natural log.

Problem 6. Figure out how to calculate the square root of a number using Napier’s

method and table. (Hint4)

(The slide rule illustration is from https://commons.wikimedia.org/wiki/File:Slide_

rule_example2_with_labels.svg)

Summary

• If ab = c, then loga c = b. a is called a “base.”

• loga(fg) = loga f + loga g

• loga(f/g) = loga f − loga g

• loga(fn) = n loga f

• A logarithm with base 10 is called a “common logarithm” and often denoted as log,

without the marker for the base.

• A logarithm with base e is called a “natural log” and often denoted as ln.

4First, express log
√
x in terms of log x.
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