
Manifold

Manifold is an important concept in mathematics. However, you don’t usually get a

chance to learn about manifolds, unless you take courses such as “Analysis on Manifolds”

which is usually taken by 4th year math major undergraduates. Nevertheless, the basic

concept is not difficult, and more importantly, one can learn about the power of mathematics,

that mathematics is about imagination, extending what we can see into what we can’t.

Let’s begin with 1-dimensional manifold. A line is 1-dimensional, as each point on a line

can be located by a single number. For example, let’s say you take a point in the line as the

origin. Then, you can assign the number 2.5 to another point if it is on a certain side of the

origin and 2.5 cm away from the origin. If another point is on the opposite side of the origin

and 3 cm away from the origin, you can assign the number −3. Therefore, we say a line is a

1-dimensional manifold.

A plane is 2-dimensional as a point on a plane can be located by two numbers. Think of

2-dimensional Cartesian coordinate system. Therefore, it is a 2-dimensional manifold.

Similarly, a 3-dimensional object which has a volume is called a 3-dimensional manifold

as three numbers are needed to pinpoint a point in it.

The idea is similar for higher-dimensions, even though we cannot visualize them. We

need n numbers to locate a point in n-dimensional manifold.

Figure 1: a circle is 1-dimensional, as a point

on it can be specified by one number, θ.

Figure 2: a sphere is 2-dimensional, as a point

on it can be specified by two numbers, θ and

φ.

Now comes the question. What are the other examples of 1-dimensional manifold? A

good example of 1-d manifold is a circle. A circle is defined by the set of points which are

on a 2-dimensional plane and equidistant to the center of the circle. In an earlier article, we

have seen that a circle can be described by the formula (x− x0)2 + (y − y0)2 = r2. See also

Fig. 1. A point on a circle such as B can be located by a single number, the angle “θ.” For
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example, the θ for A is zero. Notice that θ is periodic. If θ is 360◦, 720◦ or 1080◦, it all

describes the same point A, and therefore, the period of θ is 360◦.

How about the other examples of 2-dimensional manifold? A good one is a sphere. A

sphere is defined by the set of points which are on a 3-dimensional space and equidistant to

the center of the sphere. It can be described by (x− x0)2 + (y− y0)2 + (z − z0)2 = r2. Also,

we all know that we need two numbers to locate a point: latitude θ and longitude φ. See

Fig. 2. You are familiar with this if you know how to locate a point on Earth which looks

similar to a sphere. Here, I want to emphasize that a “sphere” in mathematical terminology

is somewhat different from a sphere in our daily life. To make an analogy, if you have an

orange, the peel is the sphere and not the interior which you eat, which is called “ball” or,

more precisely speaking, “open ball.” (We will come back to it, soon)

Now, following the logic regarding the circle, and the sphere, we can think about n-

dimensional sphere, which is called “n-sphere” and denoted Sn. For example, a circle is S1

and a usual sphere (i.e. the two-dimensional one) is S2. Following this logic, one can easily

see that S3 is a 3-dimensional sphere described by the equation (w−w0)2 + (x− x0)2 + (y−
y0)2 + (z − z0)2 = r2 in 4-dimensional Cartesian coordinate system (w, x, y, z). Of course,

it is hard to draw a 3-sphere on a sketchbook, nor is it easy to imagine what it looks like.

Nevertheless, we can concretely deal with 3-sphere mathematically.

Figure 3: a torus is 2-dimensional, because a

point on it can be specified by two numbers θ1

and θ2.

Figure 4: a cylinder is 2-dimensional, because

a point on it can be specified by two numbers

x and θ.

Another good example of 2-dimensional manifold is a torus. Again, we need two numbers

to locate a point on torus. See Fig. 3. We have θ1 and θ2 as coordinates to locate the point

C. The solid lines here can be regarded as axes. We say a torus is a “direct product” of two

circles, as to pinpoint a point in a torus, we need two periodic angles, θ1 and θ2. In other

words, if you have two circles A and B, and use θ1 to locate a point in the first circle and use

θ2 to locate a point in the second circle, there is one to one correspondence between a location

on a torus and the set of each location of a point on A and of a point on B. Therefore, torus

in two-dimension, denoted as T 2, is given by T 2 = S1 × S1.

2



Notice also that S2 is not S1 ×S1, as when θ the latitude is 0 (i.e. “the North Pole,”) no

matter what φ the longitude is, they lead to the same North pole point. On the other hand,

in case of torus, even though θ1 = 0 if θ2 is all different, they lead to different points. So,

there is no one to one correspondence between S1 × S1 and S2.

Another good example of 2-dimensional manifold is the 2-ball, the interior of a circle.

Here, 2 in 2-ball denotes the fact that 2-ball is a 2-dimensional manifold. 2-ball is sometimes

called a “disk.” Open disk is collections of points (x, y) satisfying

(x− x0)2 + (y − y0)2 < r2 (1)

Closed disk is collections of points (x, y) satisfying

(x− x0)2 + (y − y0)2 ≤ r2 (2)

Similarly, the interior of a sphere is called “3-ball” or, more precisely speaking, “open

3-ball.” To make an our earlier analogy with an orange, open 3-ball is the interior part you

eat. Open 3-ball is collections of points (x, y, z) satisfying

(x− x0)2 + (y − y0)2 + (z − z0)2 < r2 (3)

Closed 3-ball is collections of points (x, y, z) satisfying

(x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r2 (4)

This corresponds to the whole orange. Similarly, the interior of n-sphere is called “open

(n+ 1)-ball,” and if you include the surface it is called “closed (n+ 1)-ball.”

Problem 1. When you are little, you learned that the area of 2-ball with radius r is πr2.

Then, what is the length of 1-ball?

Another good example of 2-dimensional manifold is a cylinder. We need two numbers to

locate a point in a cylinder. One number θ to point out the location along the circle, and

another number x to point out the location along the flat direction. Therefore, a cylinder is

given by S1 × R1 where R1 is a line. See Fig. 4.

Then, it is easy to see that a plain plane is given by R2 = R1×R1. Think of it as x-y plane

in Cartesian coordinate system. In general, Rn for a positive integer n, is called “Euclidean

space.”

Before concluding this article, I would like to make three comments. First, in our example,

n-sphere was represented as a part of n+1 dimensional Euclidean space; we used n+1 numbers

in Cartesian coordinate system to describe n-sphere. This is an example of “embedding.” We

say n-sphere is embedded into Rn+1. Similarly, in our description, n-ball was embedded into

Rn. Notice that the case with sphere and the case with ball is slightly different. In case of

sphere, the embedding was done to a higher-dimensional manifold. However, there are ways

to describe manifolds such as spheres without embedding to higher-dimensional manifold,

but on its own. As we can locate a point in 2-sphere with two numbers (θ, φ) instead of three
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numbers (x, y, z), there are ways to locate a point in 3-sphere with three numbers instead

of four numbers (w, x, y, z). Moreover, we can still know whether the manifold is curved

without thinking about this embedding. Let me put it this way. For example, let’s say there

is an imaginative animal that cannot sense 3-dimensions, but only 2-dimensions. Would it be

able to know the fact that the shape of the Earth is roughly a sphere? It can, as it will come

back to the starting point, if it keeps traveling in any arbitrary direction, as long as it doesn’t

change direction. Actually, the distance it has to travel to come back to the starting point

doesn’t depend on the direction. Moreover, as we will see in our later article “Non-Euclidean

geometry,” if you draw a circle on a sphere, the ratio of circumference to the diameter will

be less than π, and the sum of the angles of any triangle will be bigger than 180◦. Similarly,

if our Universe is a 3-sphere, which is a serious possibility considered by cosmologists, if a

spaceship keeps traveling in any arbitrary, yet fixed, direction, it will come back to Earth

after a certain distance that doesn’t depend on the direction. Same can be said about the

ratio of circumference to the diameter and the sum of the angles of any triangle; the ratio of

circumference to the diameter will be less than π, and the sum of the angles of any triangle

will be bigger than 180◦. Of course, as mentioned, 3-sphere is hard to visualize for human

beings.

Second comment. Classifying manifolds in various dimensions is important in mathemat-

ics. It is known that 4-manifolds are the most difficult to classify, as 4 is a number that is

neither small nor big. For low dimensions, the classification is easy because low-dimensional

manifolds are simpler. For high-enough-dimensional manifolds, mathematicians can use some

strategies that work generally for such high dimensions. But, such strategies don’t work for 4-

manifold, because the number 4 is not that big. Nor is 4 small enough to classify 4-manifolds

as we can do with lower-dimensional manifolds. Anyhow, 4-dimensional manifolds play an

important role in string theory. This is one of the areas which string theory contributed most

to mathematics.

Third comment. We know that our space we live in has three dimensions. You need three

numbers to specify a point in the space. However, if we add the time to this 3-dimensional

space, our spacetime is 4-dimensional. To make an appointment to meet your friend, you

need four numbers. Three numbers to denote where to meet (i.e. latitude, longitude on the

Earth, and the height, like the floor of a building) and one number to denote when. However,

string theorists believe that the spacetime in our universe is 11-dimensional. One dimension

for time and 10 dimensions for space. We think that our 11-dimensional universe manifold

is something like R4 ×M7 where R4 is our usual 4-dimensional spacetime we live in and M7

is the extra seven dimensional manifold, or simply “extra dimensions.” (If our Universe is

3-sphere, it should be S3 × R1 ×M7 where S3 is the space we live in and R1 denotes time.)

But, don’t we see only 4-dimensional spacetime? Where are the extra dimensions M7? String

theorists believe that they are so small that we cannot feel it. To make an analogy, if S1

in the cylinder R1 × S1 is very small, the cylinder will approximately look like a line R1.

String theorist and popular science writer Brian Greene put it this way. If you look at this
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extremely thin garden hose, it looks something like a 1-dimensional line. However, if you

look at it closely with magnifying lens, you then see the circular part of the hose. Similarly,

the extra-dimensional part M7 in R4 ×M7 can be seen only when we look at it closely. In

our human eyes or everyday experience, we can only see R4 part of R4 ×M7.

Through hard work of string theorists, some mathematical properties of the extra dimen-

sions were deduced, but at this point it is far from clear how exactly the extra dimensions

must look like, even though they found “T-dualities” among five different string theories, as

we have mentioned in “M-theory and dualities.” Some string theorists work the other way

around. They investigate how the extra dimensions must look like in order to match our

physics laws, in particular the forces in our universe, such as gravity force, electromagnetic

force, strong force and weak force. This approach is known as “bottom-up approach.”

String theorists were not the first ones who came up with the idea of extra dimensions.

In the early 20th century, Kaluza and Klein showed that Einstein’s general relativity in

5-dimensional spacetime (precisely speaking R4 × S1, i.e. the extra dimension is a circle)

reproduces Einstein’s general relativity in 4-dimensional spacetime and electromagnetism.

Their idea got some attention when their work was first published, but it got more attention

in the late 20th century as it was then found that string theory necessarily requires extra

dimensions. We will teach you Kaluza and Klein’s ideas in our later article “Kaluza-Klein

theory,” but you have a long way to go before learning all its prerequisites!

Problem 2. Would a bug on an infinitely long cylinder come back to its starting point if

it keeps going in any arbitrary, yet fixed, direction like the one on sphere does? If not, which

direction must it be headed to come back to the starting point? Denote the direction in Fig.

4.

Problem 3. If our Universe is indeed 3-sphere, it means that our Universe is finitely

large, because you will come back to your original point after traveling a finite distance. In

this case, can there be an edge of our Universe? By “edge” I mean the 2-dimensional surface

of our Universe which divides the space into what is inside our Universe and what is outside

our Universe. (Hint1)

Summary

• A line is a 1-dimensional manifold, and a plane is a 2-dimensional manifold.

• We need n numbers to locate a point in n-dimensional manifold.

• n-dimensional sphere is called “n-sphere” and denoted as Sn. For example, a circle is

S1.

1Think whether a 2-sphere has an edge. An edge of 2-dimensional object, if existing, should be 1-

dimensional.
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