
Neutrino decoupling

1 Introduction

The standard big bang theory predicts the “Cosmic Neutrino Background” just like the Cos-

mic Microwave Background radiation. In other words, just like the energy of photons in the

background of our Universe follow the Planck distribution (i.e., Bose-Einstein distribution)

with a certain temperature, the energy of neutrinos in the background of our Universe follow

the Fermi-Dirac distribution with a certain temperature. In this article, we will calculate

this temperature, which is different from the CMB temperature.

In our very early universe, electron neutrinos (i.e., a type of neutrino), anti electron

neutrinos, electrons and positrons were in themal equilibrium thanks to the following frequent

reactions, which are due to weak interactions.

ν̄e + e− ↔ ν̄e + e− (1)

νe + e+ ↔ νe + e+ (2)

where νe and ν̄e denote an electron neutrino and its anti-particle, and e− adn e+ denote an

electron and its anti-particle, positron. (Other types of neutrinos, the muon neutrino (νµ)

and the tau neutrino (ντ ) do not interact directly with electrons, so they are left out in the

above reactions.)

However, such reactions became rare as the temperature of our Universe dropped below

1 MeV (i.e., when our Universe was around 1 sec old). Neutrinos were not no longer in a

thermal equilibrium with the other particles. This is known as “neutrino decoupling.”

Nevertheless, the electrons, positrons and photons still remained in thermal equilibrium

through following reactions.

e− + e+ → 2γ (3)

2γ → e− + e+ (4)

where γ denotes a gamma ray (i.e., photon).

However, as the temperature of our Universe dropped below 0.5 MeV, the mass of electron

(or positron), the reaction rate for (4) began to fall down compared to (3); the photons were no

longer energetic to form pairs of an electron and a positron. By the time that the temperature

of our Universe was far below than 0.5 MeV, the reaction (4) (almost) completely stopped.

So did (3), as most of the positrons were already anihilated by the electrons.
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Notice that the reaction (3) produces energy. This energy heats photons, but not neutri-

nos, because the latter already lost the thermal contact with the former. So, we expect that

the temperature of the Cosmic Neutrino Background is lower than the temperature of the

Cosmic Microwave Background.

To calculate this temperature, we need to use the conservation of entropy.

2 The conservation of entropy

To derive the conservation of entropy, we need to first find an expression for the pressure of

gas. Actually, we have already done so in two special limits, namely, in the non-relativistic

limit, and in the ultra-relativistic limit. By recalling how we did so in these two cases, let’s

obtain a general formula.

Recall that, in non-relativistic limit, the contribution of the ith molecule with speed vi

and the mass mi to the pressure is given by

Pi =
1
3miv

2
i

V
(5)

where does this term come from? Recall that, we had 2mivix factor because the wall bounces

the molecule, and its momentum transfer is 2mivix. However, we had additional vix/2 factor,

because it takes time for the molecule to come back to the original wall, which is proportional

to vix/2. Then, the 1/3 factor is from the fact that v2i = v2ix + v2iy + v2iz = 3v2ix. The only

difference we have in the relativistic case is that the momentum transfer is 2γmivix. Thus,

Pi =
(2γmivix)(vix/2)

V
=
γmiv

2
ix

V
=

1
3γmiv

2
i

V
(6)

Now, recall

vi =
γmivi
γmi

=
pi
Ei

(7)

Thus, (6) becomes

Pi =
p2i /3Ei
V

(8)

In conclusion, we obtain

P =

∫
gp2dp

2π2
f(E)

p2

3E
(9)

where

f(E) =
1

e(E−µ)/T ± 1
(10)

From now on, we will ignore again the chemical potential µ, which is valid in our case of

interest. Then, the BE and the FD distribution is only a function of E/T .

Problem 1. Show that the following is satisfied if f is only a function of E/T . (Hint1)

∂f

∂T
= −E

T

∂f

∂E
(11)

1Calculate ∂f/∂T and ∂f/∂E using chain rule, and compare them.
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Problem 2. Derive the following relation by using (11) and integration by parts.

∂P

∂T
=
ρ+ P

T
(12)

We derived the above formula for a gas of single component, but it is valid for a gas with

multiple components, as long as they are in thermal equilibrium (i.e., Ta = T ) because we

have
∂
∑
a Pa
T

=

∑
a ρa +

∑
a Pa

T
(13)

where Pa and ρa is the pressure and the mass density of the ath component, which implies

∂P

∂T
=
ρ+ P

T
(14)

where P =
∑
a Pa and ρ =

∑
a ρa are the total pressure and the total mass density.

Now, recall that, in our article on general relativity, we obtained

∂ρ

∂t
= −3

ȧ

a
(ρ+ P ) (15)

From this, we can derive

1

a3
∂ρa3

∂t
= −3

ȧ

a
P (16)

1

a3
∂(ρ+ P )a3

∂t
− ∂P

∂t
= 0 (17)

1

a3
∂(ρ+ P )a3

∂t
− ∂T

∂t

∂P

∂T
= 0 (18)

1

a3
∂(ρ+ P )a3

∂t
− ∂T

∂t

ρ+ P

T
= 0 (19)

1

a3
∂

∂t

(
ρ+ P

T
a3
)

= 0 (20)

In the last article, we obtained that the entropy density is s = (ρ+ P )/T . As the volume is

proportional to a3, we conclude that the total entropy is conserved.

3 The Cosmic Neutrion Background temperature

So, how can we use the conservation of entropy to calculate the temperature of the Cosmic

Neutrino Background?

Let’s calculate the total entropy of electrons, positrons and photons when they were in

thermal equilibrium with neutrino. As mentioned, this is before electron-positron annihila-

tion. Let’s call the temperature and the scale factor then by Tn and an. Also, recall that

g = 2 for photons, g = 2 for electrons (spin up and spin down) and g = 2 for positrons (spin

up and spin down). In our earlier article, we have seen that the entropy density per degree

of freedom of relativistic Fermi gas is 7/8 of the one of Bose gas. Thus,

S = sV = (2 +
7

8
× 2 +

7

8
× 2)

2π2

45
T 3
n(2π2a3n) =

11

4

4π4

45
(Tnan)3 (21)
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where we used the fact that the volume of a 3-sphere with radius r is 2π2r3. (Of course,

only the fact that the volume is proportional to a3 is important in actual comparison.) This

value, the total entropy of electrons, positrons, and photons is preserved after the neutrino

decoupling. We did not include the entropy of neutrinos in this calculation at the first place.

Now, let’s calculate the total entropy of electrons, positrons and photons after electron-

positron annhilation. It is given by the entropy of photons, because the number of electrons

and positrons survived after the annhilation are negligible. Thus, we have

S = sV = 2
2π2

45
T 3(2π2a3) = 2

4π4

45
(Ta)3 (22)

Equating (21) and (22), we have

Tnan =

(
4

11

)1/3

Ta (23)

So, what is Tν , the temperature of the Cosmic Neutrino Background now? In our earlier

article “The CMB today,” we have obtained that Ta is a constant for the CMB. By taking

a similar step, it is very easy to see that Ta for the Cosmic Neutrino Background (i.e., the

neutrino temperature multiplied by the scale factor) is constant as well. Thus, we have

Tnan = Tνa. Plugging this to (23), we get

Tν =

(
4

11

)1/3

T (24)

As the CMB temperature now is about 2.73 K, the Cosmic Neutrino background temperature

now is about 1.95 K. However, as the Cosmic Neutrino Background has never been detected,

so this temperature is not confirmed by observations yet.

Summary

• Neutrino decoupled before electron-positron annihilation. Therefore, the energy re-

leased during electron-positron annihilation was transferred to photons, but not to

neutrinos. Therefore, the temperature of the Cosmic Microwave Background is higher

than the temperature of the Cosmic Neutrino Background. The latter can be expressed

in terms of the former by using the conservation of entropy.
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