
Dimensions of orthogonal group and unitary group

In an earlier article, we have introduced orthogonal matrix O(N) and special orthog-

onal matrix SO(N). In the last article, you have shown that they form groups. In this

article, we will calculate their dimensions using three methods. Then, we will calculate

the dimension of unitary group U(N) and special unitary group SU(N).

First method. A, an N × N matrix, has N2 entries. For A to be an orthogonal

matrix, it needs to satisfy AAT = I. Now, notice that any N ×N matrix A satisfies

(AAT )T = AAT (1)

In other words, AAT is a symmetric matrix.

Problem 1. Show that a symmetric N × N matrix has N(N + 1)/2 independent

components.

Thus, AAT = I gives N(N + 1)/2 independent conditions. As A has N2 entries,

which satisfy N(N + 1)/2 equations, there are N2 −N(N + 1)/2 = N(N − 1)/2 inde-

pendent degree of freedoms for O(N). This is the dimension of O(N). O(N) group is

N(N − 1)/2 dimensional manifold. To calculate the dimension of SO(N), notice that

O(N) has either determinant 1 or −1. Thus, SO(N) is half of O(N). As we know that

cutting a manifold equally to two parts doesn’t diminish the dimension, SO(N) is also

N(N − 1)/2 dimensional manifold.

Second method. In earlier articles, we have seen that special orthogonal matrices

correspond to rotation matrices; length is invariant under rotation, and SO(N) preserves

the length. To rotate something, we need to pick a plane that rotates. For example, if

you rotate a point (x1, x2, x3, x4) in R4 along 2− 4 plane by θ we will have

x′1 = x1

x′2 = x2 cos θ − x4 sin θ

x′3 = x3

x′4 = x4 cos θ + x2 sin θ (2)

There are total
(
4
2

)
= 6 number of two sets of plane that we can rotate. So, SO(4) is

6 dimensional. In general, SO(N) is
(
N
2

)
= N(N−1)

2 dimensional. Notice that SO(3)
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Figure 1: Choosing e⃗2 Figure 2: Choosing e⃗3

(rotation in 3-d) is 3-dimensional, because 3(3− 1)/2 = 3. For N ̸= 3, the dimension of

SO(N) is not equal to N .

Third method. This is the method that I made up myself when I first learned

orthogonal matrix when I was a freshman in university. Of course, I am sure that I

am not the one who first had this idea. Orthogonal matrix is equivalent to choose

orthonormal basis. For example, if you write an O(3) matrix as follows:

O =

 e⃗1 e⃗2 e⃗3

 (3)

Then, we have

OTO =


e⃗1

e⃗2

e⃗3


 e⃗1 e⃗2 e⃗3

 =


1 0 0

0 1 0

0 0 1

 (4)

In component notation, we have

e⃗i · e⃗j = δij (5)

e⃗s are indeed orthonormal basis. Now comes my idea. Let’s choose e⃗1 first. It’s a vector

with magnitude 1. Thus, it can point anywhere in 2-sphere. (e21x+e21y+e21z = 1.) Thus,

there is 2 degree of freedom. Once, we chose e⃗1, we can then choose e⃗2. As e2 has to be

orthogonal to e⃗1, e⃗2 has to lie in 1-sphere (i.e. circle) orthogonal to e1. See Fig.1. e2 can

lie anywhere in the dotted circle. Thus, there is 1 degree of freedom. Once we chose e2,

e3 has to be orthogonal to both e1 and e2. The condition that it has to be orthogonal

to e1 forces it to lie in the dotted circle. The condition that it has to be orthogonal to

e2 forces it to be one of either of two points in the dotted circle see Fig. 2. So, there is

no degree of freedom, but just two choices. One point will give the determinant of the

matrix 1, and the other −1. Thus, the dimension of SO(3) (as well as O(3)) is given by

2 + 1 = 3.
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In general, for O(N) matrix, e1 will lie in SN−1. e2 will lie in SN−2 and so on. eN

can have two choices: the one with determinant 1 and the other with determinant −1.

Thus, the dimension of O(N) is given by

(N − 1) + (N − 2) + · · ·+ 1 + 0 =
N(N − 1)

2
(6)

Now, we turn to calculate the dimension of unitary group. To recall, a unitary group

U satisfies UU † = I. U(N) is an N ×N unitary matrix.

Given this, we can take the similar step as the firth method to calculate the dimension

of orthogonal group. A complex valued N × N matrix B has 2N2 real dimensions, as

there are N2 complex entries, and each complex number has 2 real dimensions (the real

part, and the complex part).

For B to be a unitary matrix it needs to satisfy BB† = I. Now, notice that any

complex valued N ×N matrix B satisfies

(BB†)† = BB† (7)

In other words, BB† is a Hermitian matrix.

Problem 2. Show that a Hermitian N ×N matrix has N2 real independent com-

ponents.

Thus, BB† = I gives N2 independent real conditions. As B has 2N2 independent

real components, there are 2N2 − N2 = N2 independent real degree of freedoms for

U(N). This is the dimension of U(N).

SU(N) is a N ×N unitary matrix with determinant 1. In case of O(N), its deter-

minant was 1 or −1. Thus, the dimension of O(N) was the same as the one of SO(N).

However, in case of unitary group, we have

detU detU † = det I → detU(detU)∗ = 1 (8)

Thus, the determinant of a unitary group is a complex number whose magnitude is 1,

i.e., it is a so-called pure phase, and can be expressed as

detU = eiϕ (9)

for 0 ≤ ϕ < 2π. So, the determinant of U can be expressed by one real number, ϕ. Thus,

compared with the unitary group, a special unitary group has the extra condition that

ϕ = 0. In other words, it has one less dimension that the unitary group. In conclusion,

the real dimension of SU(N) group is N2 − 1.

Final comment. Groups such as SO(N), O(N), SU(N) that are also manifold are

called “Lie group” (pronounced “Lee group”) named after the 19th century Norwegian

mathematician Sophus Lie. He was the one who first came up with Lie group. Complete
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classification of Lie group was done by the French mathematician Cartan. Lie group

theory was a concept that found no immediate application in physics when it was first

developed, but now it is essential in particle physics. We will talk more about it in our

later articles.

Summary

� The dimension of SO(N) is
(
N
2

)
.

� The dimension of SU(N) is N2 − 1.
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