Partial derivatives and the chain rule

Partial derivative is extensively used in physics and mathematics. It is
not a hard concept, if you know what derivative is.
Recall what ordinary derivative is. If f(z,y) = 2%y + y2, we have:
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On the other hand, partial derivative of f(x,y) with respect to x is given
by:
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In other words, we have set y as a constant that does not depend on .

d
(i.e. d—y = 0) When taking partial derivative with respect to z, we treat all
x

other variables as constants. Now, let’s take (2) once more, this time with
respect to y. We get:
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To step further, let’s calculate the following quantity:
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So, we see that
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In fact, this is true for any function f(z,y) as long as the partial deriva-
tives exist. In other words, we say partial derivatives “commute.” One can
actually check the above formula from the definition of partial derivatives
as follows:
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On the other hand, we have:
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Therefore, we see that they are indeed equal.

We can also Taylor-expand an arbitrary function f(z,y) in terms of
partial derivatives. To this end, let’s first regard y as a constant. Then, we
have
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We also have
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Summarizing, we have
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Not sure, what this equation means? First, let’s re-write the above
formula. Upon substituting xg — z, yo — v, (x —xz9) = Az, (y—yo) — Ay,
we have
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The left-hand side is the change in f. When --- in the right-handside
can be ignored (i.e., considering only the linear order in Az and Ay), the
above formula says that the change in f is the sum of the change in f due
to x and the change in f due to y.
Actually, we can visualize what we just said. Before doing so, first
recall how the concept of derivative arised. We can approximate any graph
y = g(x) as a straight line near a given point as
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Figure 1: The change of f is approximately, the sum of its change due to
the change of x and its change due to the change of y.

when - - - is negligible i.e., when Ax is small. Here, dg/dx is the slope.
Similarly, we can approximate any graph z = f(z,y) as a flat plane near

a given point. See Fig. 1. You see a graph of z = f(z,y), which can be

regarded as flat, when Az and Ay are sufficiently small. In the figure, you

see that f(z + Axz,y) is greater than f(x,y) by ngm and f(z,y + Ay) is
T
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greater than f(x,y) by a—fAy. Through the aid of two red dotted lines, we
Y

see that f(z + Ax,y + Ay) is greater than f(z,y) by the sum of these two
terms.
Now, let’s see a further application of the partial derivatives. You are
already familiar with the chain rule which is given by following formula:
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If f is a function of several variables x,y, z, which are in turn functions
of t, we have:
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You can prove this by using (14). The only difference is that we have three
variables (i.e. x,y,z) in our case. We can also have the partial derivative
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version of this formula as follows, when z,y,z are functions of ¢ and s:
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Problem 1. Using (14), convince yourself that (17) is correct.

Problem 2. Let g(z,y) = sin(z?y). By explicit calculations, check that
the partial derivatives commute.
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Summary

A partial derivative with respect to x is a derivative assuming all the

other variables besides x is a constant. It is denoted by e
z

Partial derivatives commute:
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e If f is a function z,y, z, which are in turn functions of ¢, we have:
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If f is a function of variables x, y, z which are in turn functions of ¢, s,
the chain rule says
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