
Feynman path integral

In our earlier article on Ehrenfest theorem, we learned how Hamiltonian formulation

of classical mechanics corresponds to quantum mechanics. In this article, we will see how

Lagrangian picture of classical mechanics corresponds to quantum mechanics. This is due to

Richard Feynman’s Ph.D dissertation in 1948. This picture of quantum mechanics is called

“Path integral formulation of quantum mechanics,” and doesn’t assume Schrödinger equation

as input. Nevertheless, as we will see, it is equivalent to Schrödinger equation.

1 The sum over paths

Let’s say that a particle is initially at a position xa when time is ta. What is the probability

that it will show up at a position xb at time tb? To answer this question, first, notice that

the wave function was initially |xa〉. After the time tb − ta has elapsed, the wave function

becomes following:

e−iH(tb−ta)/h̄|xa〉 (1)

Given this, if we define the transition amplitude U as follows,

U(xa, ta;xb, tb) = 〈xb|e−iH(tb−ta)/h̄|xa〉 (2)

the probability that we want is simply given by

U(xa, ta;xb, tb)U
∗(xa, ta;xb, tb) (3)

Therefore, U indeed deserves the name “transition amplitude,” since the above expression is

transition probability. Notice also that U is the representation of time evolution operator in

position basis.
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Now, to express U in a slightly different way, let’s define the Heisenberg picture position

bra as follows:

|xa, ta〉 = eiHta/h̄|xa〉 (4)

(Problem 1. Prove that the above vector is an eigenvector of the Heisenberg picture position

matrix with eigenvalue xa assuming that |xa〉 is the eigenvector of the Schrödinger picture

position matrix with eigenvalue xa.) Then, it is easy to check that U is given by:

U(xa, ta;xb, tb) = 〈xb, tb|xa, ta〉 (5)

Now, let’s insert the following completeness relation to the above equation

1 =

∫
dx1|x1, t1〉〈x1, t1| (6)

then, we get:

U(xa, ta;xb, tb) =

∫
dx1〈xb, tb|x1, t1〉〈x1, t1|xa, ta〉 (7)

The interpretation of the above equation is follows. The particle is at xa when t = ta then

it can move to any position x1 when t = t1 then finally arrive at xb when t = tb. This

suggests that t1 that satisfies ta < t1 < tb is meaningful. Similarly, we can actually insert

the completeness relation as many time as we want as follows:

U(xa, ta;xb, tb) =

∫
dxN

∫
dxN−1 · · ·

∫
dx1〈xb, tb|xN , tN 〉

× (8)

langlexN , tN |xN−1, tN−1〉 · · · 〈x1, t1|xa, ta〉 (9)

where ta < t1 · · · < tN−1 < tN < tb. This represents the sum of all possible paths since the

integration ranges for dxs are from the negative infinity to the positive infinity. See Fig.1.

2 Feynman path integral

In his Nobel lecture, Feynman described how he had come to discover the path integral

formulation of quantum mechanics. As he struggled to find out a formulation of quantum

mechanics based on action, at a beer party in a tavern in Princeton, he asked Prof. Jehle,

a European, whether he had any idea. The next day, at the Princeton library, Jehle showed

him the following equation in Dirac’s paper, which in our notation is as follows:

〈x′, t+ ε|x, t〉 is analogous to exp

(
i

∫ t+ε

t

L(x,
x′ − x
ε

)dt/h̄

)
(10)

Feynman then told Jehle that he guessed that Dirac meant “equal” by “analogous.” Jehle

objected, and commented that it would be useless to think about it. Feynman then did some

calculation assuming that they were equal and derived Schrödinger’s equation upon an extra

assumption that they were not equal but proportional. Feynman showed his calculation to

Jehle, who was very surprised and told him that it was an important discovery.
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Now, let’s find out what Feynman did. From (7), we have

U(xa, 0;x′, t+ ε) =

∫
dx〈x′, t+ ε|x′, t〉U(xa, 0;x, t) (11)

Given this, we have to insert (10). As the Lagrangian is given as follows for infinitesimal ε,

L(x,
x′ − x
ε

) =
1

2
m(

x′ − x
ε

)2 − V (x) (12)

we have:

i

∫ t+ε

t

L(x,
x′ − x
ε

)/h̄ = exp

(
i

h̄

m(x′ − x)2

2ε
− i

h̄
εV (x)

)
(13)

Now, if we insert the proportionality constant C(ε) as follows, we get:

U(xa, 0;x′, t+ ε) = C(ε)

∫
dx exp

(
i

h̄

m(x′ − x)2

2ε
− i

h̄
εV (x)

)
U(xa, 0;x, t) (14)

As x′ cannot be far from x when ε is small, we can Taylor-expand the above formula as

follows:

U(xa, 0;x′, t+ ε) = C(ε)

∫
dx exp

(
i

h̄

m(x′ − x)2

2ε

)
(1− i

h̄
εV (x)) (15)

×
(

1 + (x′ − x)
∂

∂x
+

1

2
(x′ − x)2 ∂

2

∂x2

)
U(xa, 0;x, t) (16)

Recalling the following formulas:∫
dξe−Aξ

2

=

√
π

A
,

∫
dξξe−Aξ

2

= 0,

∫
dξξ2e−Aξ

2

=
1

2A

√
π

A
(17)

we obtain:

U(xa, 0;x′, t+ ε) = C(ε)

√
2πh̄ε

−im

(
1− iε

h̄
V (x) +

iεh̄

2m

∂2

∂x2

)
U(xa, 0;x, t) (18)

The above equation must be satisfied when ε = 0, this implies:

C(ε) =

√
m

2πih̄ε
(19)

Plugging this back in, and comparing the terms of order ε we get:

ih̄
∂

∂t
U(xa, 0;x, t) =

(
− h̄2

2m

∂2

∂x2
+ V (x)

)
U(xa, 0;x, t) (20)

This is exactly Schrödinger’s equation!

Summarizing, we have obtained:

〈x′, t+ ε|x, t〉 =

√
m

2πih̄ε
exp

(
i

∫ t+ε

t

L(x,
x′ − x
ε

)dt/h̄

)
(21)

Now, let’s plug this back into (9). We get:

〈xb, tb|xa, ta〉 = lim
N→∞

(
m(N + 1)

2πih̄(tb − ta)

)(N+1)/2 ∫
dxN

∫
dxN−1 · · ·

∫
dx1 exp

(
i

∫ tb

ta

L(x, ẋ)dt/h̄

)
(22)
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(Problem 2. Prove this. Hint1)

If we use the following notation:∫
D [x(t)] = lim

N→∞

( m

2πih̄ε

)(N+1)/2
∫
dxN

∫
dxN−1 · · ·

∫
dx1 (23)

we get:

〈xb, tb|xa, ta〉 =

∫ x(t=tb)=xb

x(t=ta)=xa

D [x(t)] exp

(
i

∫ tb

ta

L(x, ẋ)dt/h̄

)
(24)

Notice that the integration inside the exponent is for all paths that satisfy the boundary

conditions x(t = ta) = xa and x(t = tb) = xb.

Now, let us explain how the classical picture emerges from the path integral formulation

of quantum mechanics. Consider a path A that doesn’t satisfy δS = 0, and let’s consider its

neighboring paths A+ εδA for small ε. Let’s say their actions are given as follows

S(A+ εδA) = S(A) + εδS (25)

Remember that we are summing over all possible paths. As h̄ is very small, the exponential in

(24) (i.e. eiS/h̄) oscillates very rapidly, as you change ε. This implies that their contributions

to the amplitude have a tendency of getting canceled by neighboring paths; if you add up

contributions that have random oscillating phases, you get zero. Thus, we see that the paths

that are not the classical path contribute very little to the path integral.

However, this is not true for the path that satisfies δS = 0, which is exactly the classical

path. In this case, the action for its neighboring paths don’t differ much, which makes their

contribution to the amplitude not be canceled one another, because the exponentials in (24)

don’t oscillate much, but have somewhat similar values.

3 General case

In the last section, we have only considered the non-relativistic Newtonian case for the

Lagrangian and the Hamiltonian,. In this section, we will see how it can be generalized.

Also, we will use natural unit h̄ = 1 for simplicity. For infinitesimal ε, we have:

〈x′, t+ ε|x, t〉 = 〈x′|e−iHε|x〉 = e−iHε〈x′|x〉

= e−iHε (26)

langlex′|p〉
∫
dp〈p|x〉 = e−iHε

∫
dp

2π
eip(x

′−x)

=

∫
e−iHε

dp

2π
eipẋε =

∫
dp

2π
ei(pẋ−H)ε(27)

Notice that the exponent is exactly Lagrangian. Plugging this back to (9), we get:

〈xb, tb|xa, ta〉

= lim
N→∞

∫
dpN
2π

∫
dpN−1

2π
· · ·
∫
dp1

2π

∫
dxN

∫
dxN−1 · · ·

∫
dx1 exp

(
i

∫ tb

ta

(pẋ−H)dt/h̄

)
1Set ε = (tb − ta)/(N + 1) and also use ea1ea2 · · · ean = ea1+a2+···an
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which can be expressed more compactly as follows

〈xb, tb|xa, ta〉 =

∫
Dp Dx exp

(
i

∫ tb

ta

(pẋ−H)dt/h̄

)
(28)

under suitable normalizations of Dp and Dx. Notice that the above result reproduces (24)

where L is given by (13) if H = p2

2m + V (x) as the p integration is a Gaussian one upon

completing the square, which only contributes to overall normalization factor.

4 Path integral in Euclidean space

Our world which we live in is not the Euclidean space but the Minkowski space. However.

if we define the Euclidean time τ from Minkowskian time t (i.e the usual time) by τ = it we

would have Euclidean space, as the proper distance would be then given by

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 + (∆τ)2 (29)

Contrary to what you may naively believe, Euclidean time turns out to be quite useful

in physics. For example, in our later article “A Relatively Short Introduction to General

Relativity,” we will apply it to calculate the temperature of black holes. To this end, let’s

briefly review how it works.

Using (2), (24) can be re-expressed as

〈xb|e−iH(tb−ta)|xa〉 =

∫
D [x(t)] exp

(∫ tb

ta

(
1

2
m(

dx

dt
)2 − V (x))i dt

)
(30)

which, upon Euclideanization, becomes

〈xb|e−H(τb−τa)|xa〉 =

∫
D [x(τ)] exp

(∫ τb

τa

−
(

1

2
m(

dx

dτ
)2 + V (x)

)
dτ

)
(31)

If β = τb − τa and xa = xb = x we have,

Tr
(
e−βH

)
=

∫
dx〈x|e−βH |x〉 =

∫
D [x(τ)] exp

(∫ τ+β

τ

−
(

1

2
m(

dx

dτ
)2 + V (x)

)
dτ

)
(32)

where D [x(τ)] denotes all the curves that satisfy x(τ) = x(τ + β) (i.e. curves with period

β.) We see that the left-hand side is exactly the partition function in statistical mechanics.

The right-hand side is also called the partition function.

Summary

• Feynman path integral formalism is a Lagrangian formulation of quantum mechanics.

It says that the quantum amplitude of an object from one position to another is given

by the sum of amplitudes of all possible paths between these two positions along which

the object can move.
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• In particular,

〈xb, tb|xa, ta〉 =

∫ x(t=tb)=xb

x(t=ta)=xa

D [x(t)] exp

(
i

∫ tb

ta

L(x, ẋ)dt/h̄

)

• In the classical limit, only the classical path contributes (i.e., δS) to the path integral,

as the contributions of the other paths cancel one another because the phase (i.e., eiS/h̄)

vary rapidly from one path to the neighboring path.
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