
Pauli matrices and spinor

In this article, we will represent the angular momentum operator by matrices. To this

end, recall that in the last article we asserted that L+|j, m〉 is proportional to |j, m + 1〉
while L−|j, m〉 is proportional to |j, m − 1〉. Now, let’s find the explicit proportionality

constant. First, we will define |j, m〉s to be orthonormal as follows:

〈j1, m1|j2, m2〉 = δj1j2δm1m2 (1)

This is possible since |j, m〉s are eigenvectors of Hermitian matrices (i.e. L2 and LZ .). Now,

we have:

L+|j, m〉 = c|j, m+ 1〉 (2)

〈j, m|L−L+|j, m〉 = 〈j, m+ 1|c∗c|j, m+ 1〉

〈j, m|L2 − L2
z − h̄Lz|j, m〉 = |c|2

(j(j + 1)−m2 −m)h̄2 = |c|2

|c| = h̄
√
j(j + 1)−m(m+ 1) (3)

where from the first line to the second line, we used (L+)† = L− and where from the second

line to the third line, we used (18) in last article. Without loss of generality, one can choose c

to be real. In other words, c = |c|. This is possible by performing global gauge transformation

upon the eigenvector |j, m+ 1〉 in (2). Therefore, we conclude:

L+|j, m〉 = h̄
√
j(j + 1)−m(m+ 1)|j, m+ 1〉 (4)

Similarly, one can show (Problem 1.)

L−|j, m〉 = h̄
√
j(j + 1)−m(m− 1)|j, m− 1〉 (5)

Now, let’s find the matrix representation of angular momentum, when j = 1/2. We know

that its vector space is 2-dimensional since we have |1/2, 1/2〉 and |1/2, − 1/2〉. We can

represent this by:

|1/2, 1/2〉 =

(
1

0

)
, |1/2, − 1/2〉 =

(
0

1

)
(6)

The first one is called “spin up” and is the eigenvector of Lz with eigenvalue h̄/2. The other

one is called “spin down” and is the eigenvector of Lz with eigenvalue −h̄/2. A general

state in this vector space can be represented by a linear combination of these two vectors as

follows:

ψ =

(
a

b

)
(7)
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This representation called “spinor” is used to express the state vector of spin-1/2 particle

such as electron. Now, observe the followings:

Lz|1/2, 1/2〉 =
h̄

2
|1/2, 1/2〉, Lz|1/2, − 1/2〉 = − h̄

2
|1/2, − 1/2〉 (8)

implies:

Lz =
h̄

2

(
1 0

0 −1

)
(9)

Similarly,

L+|1/2, 1/2〉 = 0, L+|1/2, − 1/2〉 = h̄|1/2, 1/2〉 (10)

implies:

L+ = h̄

(
0 1

0 0

)
(11)

L−|1/2, 1/2〉 = h̄|1/2,−1/2〉, L−|1/2, − 1/2〉 = 0 (12)

implies:

L− = h̄

(
0 0

1 0

)
(13)

Using, Lx = (L+ + L−)/2, and Ly = (L+ − L−)/(2i), we obtain

Lx =
h̄

2

(
0 1

1 0

)
, Ly =

h̄

2

(
0 −i
i 0

)
(14)

If we define σ by ~L = (h̄/2)~σ, we conclude:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(15)

These are called “Pauli matrices.”

Recall that (6) are eigenvectors of Lz. What are the eigenvectors of Lx and Ly? Using

(14), one can check that

αx =
1√
2

(
1

1

)
, βx =

1√
2

(
1

−1

)
(16)

are eigenvectors of Lx with eigenvalues h̄/2, −h̄/2 respectively, and

αy =
1√
2

(
1

i

)
, βy =

1√
2

(
1

−i

)
(17)

are eigenvectors of Lx with eigenvalues h̄/2, −h̄/2 respectively.

All the constructions in this article were based on 3 spatial dimensional cases; we used

x, y, z and px, py, pz. We showed that this led to an object that has two components. This

is called a “spinor.” Then, what would be the analogous relativistic construction? There,

we would need x, y, z, t and px, py, pz, E. Now, remember why we have 3 components
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of angular momentum in 3-dimensional space. We need to choose two spatial directions to

rotate something on the plane spanned by these two spatial directions. As
(
3
2

)
= 3 a angular

momentum in 3-dimensional space has 3 components. In 4-d spacetime dimension,
(
4
2

)
= 6.

So, there are 6 ways to “rotate” an object in 4-d spacetime. 3 of them is related to the

angular moomentum and 3 is related to the boost.

Wolfgang Pauli, who discovered Pauli matrices, knew that he had to extend his construc-

tion of Pauli matrices to a relativistic one, which would require 6 “relativistic” Pauli matrices.

However, that turned out to be so difficult that he had to give up.

In 1928, Dirac found the solution. He constructed what is now called “Dirac equation,”

a relativistic version of Schrödinger equation for an electron. As by-products it all naturally

followed that an electron has to have spin 1/2 and that orbital angular momentum of an

electron is not conserved on its own, but only the sum of its orbital angular momentum and

its spin angular momentum is conserved. It also followed that the g-factor had to be 2, as

we mentioned in “Electron magnetic moment.”1

Let me digress a little bit. In this article, we have seen that the wave function of an

electron has two components as in (7). Dirac showed that, in 4d, it has four components. It

turned out that two of the four components correspond to the wave function of electron, and

the other two correspond to the wave function of positron, the anti-particle of electron. As

we mentioned in “Charge conjugation,” Dirac’s prediction of positron is verified through its

experimental discovery.

Dirac claimed that the knowledge of Pauli matrices did not help him at all in discov-

ering Dirac’s equation and spin angular momentum of electron, but the Japanese physicist

Shinichiro Tomonaga wrote in his book “The story of spin” that he doubted it. Even though

the knowledge of Pauli matrices coudn’t have been directly helpful, it could be helpful in

his contructrion of what is now called “Dirac matrices” which could be roughly described

as 4-dimensional (“4d”) analogs of Pauli matrices. As an aside, Pauli matrices are 2 × 2

matrices while Dirac matrices are 4× 4. In 10d or 11d, in which string theory and M-theory

live respectively, the Dirac matrices are 32 × 32, and a spinor has 32 components. All this

would be interesting to talk about more in details, but this is out of scope for this series

unfortunately.

Finally, let me conclude this article with a comment. One can take similar steps as in

j = 1/2 case to calculate the angular momentum matrices for other j. (Of course, we are

talking about 3d case as before.) For example, for j = 1, we obtain:

Lx =
h̄√
2


0 1 0

1 0 1

0 1 0

 (18)

1As mentioned there, it is not exactly 2, but only approximately 2.
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Ly =
h̄√
2


0 −i 0

i 0 −i
0 i 0

 (19)

Lz =
h̄

2


1 0 0

0 0 0

0 0 −1

 (20)

Problem 2. Suppose, an electron is in an eigenstate of Lz with eigenvalue −h̄/2. What

is the probability that its Lx will be h̄/2 if you measure it?

Problem 3. Check (18), (19) and (20).

Problem 4. So far we have considered the angular momentum along x, y or z axis.

More generally, we can consider the angular momentum along an arbitrary direction r̂ given

as follows using spherical coordinate system:

r̂ = sin θ cosφî+ sin θ sinφĵ + cos θk̂ (21)

Show that the eigenspinors of angular momentum along r̂ with eigenvalues respectively

h̄/2 and −h̄/2 are given as follows:

αr̂ =

(
cos(θ/2)

eiφ sin(θ/2)

)
, βr̂ =

(
e−iφ sin(θ/2)

− cos(θ/2)

)
(22)

For example, for Lz we have θ = 0 and φ = 0, so we obtain (6). For Lx, we have θ = π/2

and φ = 0, so we obtain (16). For Ly, we have θ = π/2 and φ = π/2, so we obtain (17) upto

overall phase. (If ~v is a normalized eigenvector, eiλ~v is also a normalized eigenvector with

the same eigenvalue. Here eiλ is the overall phase with λ being real.)(Hint2)

Summary

• |1/2, 1/2〉 =

(
1

0

)
, |1/2, − 1/2〉 =

(
0

1

)
• The first one is called “spin up” and the other one is called “spin down.”

• These two-dimensional space is called “spinor.”

• ~L = (h̄/2)~σ. σz =

(
1 0

0 −1

)

2The angular momentum along the direcion r̂ is given by L̂ · r̂ where L̂ = Lx î+ Ly ĵ + Lz k̂.
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