Pentagon, the Fibonacci sequence, and the golden ratio

1 Pentagon and the golden ratio

See Fig. 1. $A B C D E$ is a pentagon. Its sides have the same length and the angles of the pentagon are all the same (i.e., $\angle E A B=\angle A B C=\angle B C D=\angle C D E=\angle D E A$). If you connect all the vertices in the pentagon one another, you get a "star" shape.

Problem 1. Calculate the value of these angles. (Hint ${ }^{1}$)
Problem 2. Obtain $\angle A B E$ (or $\angle A E B$, which is the same). (Hint ${ }^{2}$)
Of course, $\angle A B E=\angle C B D$
Problem 3. Obtain $\angle E B D$. (Hint ${ }^{3}$)
Problem 4. Show $\triangle A B E$ is congruent to $\triangle U B E$. Therefore, $\overline{A B}=\overline{B U}=\overline{U E}=\overline{E A}$. Show also $\overline{B E}=\overline{B D}$.

Problem 5. Let's say $\overline{A B}=1$, and $\overline{B E}=\phi$. Then, show that $\overline{U D}=\overline{U C}=\phi-1$.
Problem 6. Show $\triangle U E B$ is similar to $\triangle U D C$.
Problem 7. Thus, show that

$$
\begin{equation*}
\phi(\phi-1)=1 \tag{1}
\end{equation*}
$$

Figure 1: Pentagon

Figure 2: the golden ratio

[^0]Problem 8. Solve this equation to show that

$$
\begin{equation*}
\phi=\frac{1+\sqrt{5}}{2}=1.61803 \cdots \tag{2}
\end{equation*}
$$

ϕ is called the "golden ratio." We have just seen that

$$
\begin{equation*}
\phi=\frac{1}{\phi-1}=\frac{\overline{B E}}{\overline{A B}}=\frac{\overline{B E}}{\overline{E D}}=\frac{\overline{B E}}{\overline{A B}} \tag{3}
\end{equation*}
$$

Similarly, by the similarity of triangles, it is straightforward to show that

$$
\begin{equation*}
\phi=\frac{1}{\phi-1}=\frac{\overline{B S}}{\overline{S T}}=\frac{\overline{T V}}{\overline{S W}} \tag{4}
\end{equation*}
$$

Another interpretation of the golden ratio would be following. See Fig. 2. You see three quadrangles. $\square F G K J$, which is a square and $\square F H I K$ and $\square H I J G$.

Problem 9. Let's say $\square G H I J$ is similar to $\square H I K F$. Then show that

$$
\begin{equation*}
\phi=\frac{\overline{K I}}{\overline{F K}}=\frac{\overline{H I}}{\overline{G H}} \tag{5}
\end{equation*}
$$

Problem 10. By considering the isoscles triangle $\triangle B E D$, show

$$
\begin{equation*}
\cos 72^{\circ}=\frac{1-\sqrt{5}}{4} \tag{6}
\end{equation*}
$$

2 Fibonacci sequence

Consider the Fibonacci sequence defined by the following rules:

$$
\begin{equation*}
F_{1}=1, \quad F_{2}=1, \quad F_{n}+F_{n+1}=F_{n+2} \tag{7}
\end{equation*}
$$

Let's use these rules to determine this sequence:

$$
\begin{array}{r}
1+1=2=F_{3} \\
1+2=3=F_{4} \\
2+3=5=F_{5} \\
3+5=8=F_{6} \\
5+8=13=F_{7} \\
8+13=21=F_{8} \\
13+21=34=F_{9} \\
21+34=55=F_{10} \tag{8}
\end{array}
$$

and so on. Given this, let's now calulate the ratio F_{n+1} / F_{n} and see what happens

$$
\begin{gather*}
\frac{1}{1}=1, \quad \frac{2}{1}=2, \quad \frac{3}{2}=1.5, \quad \frac{5}{3}=1.66 \cdots, \quad \frac{8}{5}=1.6 \\
\frac{13}{8}=1.625, \quad \frac{21}{13}=1.6153 \cdots, \quad \frac{34}{21}=1.6190 \cdots, \quad \frac{55}{34}=1.6176 \cdots \tag{9}
\end{gather*}
$$

Do you notice something? The ratio approaches the golden ratio. Let's figure out why. Suppose the ratio approaches a certain constant. Then, we have

$$
\begin{equation*}
\frac{F_{n+1}}{F_{n}}=\frac{F_{n+2}}{F_{n+1}} \tag{10}
\end{equation*}
$$

for very big n. (Strictly speaking, the equal sign in the above equation should be the approximation sign \approx.) Now, let's use $F_{n}+F_{n+1}=F_{n+2}$. Then,

$$
\begin{equation*}
\frac{F_{n+1}}{F_{n}}=\frac{F_{n}+F_{n+1}}{F_{n+1}}=\frac{F_{n}}{F_{n+1}}+1 \tag{11}
\end{equation*}
$$

For convenience, let's define $r \equiv F_{n+1} / F_{n}$. Then, we have

$$
\begin{align*}
r & =\frac{1}{r}+1 \tag{12}\\
r-1 & =\frac{1}{r} \tag{13}\\
r(r-1) & =1 \tag{14}
\end{align*}
$$

which is exactly (1). Thus, we see the reason why F_{n+1} / F_{n} approaches the golden ratio.
Now, another property of the Fibonacci sequence. Let's compare F_{n}^{2} and $F_{n-1} F_{n+1}$.

$$
\begin{array}{ll}
F_{2}^{2}=1, & F_{1} F_{3}=2 \\
F_{3}^{2}=4, & F_{2} F_{4}=3 \\
F_{4}^{2}=9, & F_{3} F_{5}=10 \\
F_{5}^{2}=25, & F_{4} F_{6}=24 \\
F_{6}^{2}=64, & F_{5} F_{7}=65 \\
F_{7}^{2}=169, & F_{6} F_{8}=168 \tag{15}
\end{array}
$$

Do you see the pattern? We find the pattern that F_{n}^{2} is $F_{n-1} F_{n+1}+1$, when n is odd, $F_{n-1} F_{n+1}-1$, when n is even. In other words,

$$
\begin{equation*}
F_{n}^{2}=F_{n-1} F_{n+1}-(-1)^{n} \tag{17}
\end{equation*}
$$

Will this pattern continue for bigger n ? Once we prove the above relation we can be certain.
Problem 11. Prove (17) by induction.
It is possible to obtain a general formula for the Fibonacci sequence. First, notice that for a very large n, we have

$$
\begin{equation*}
\frac{F_{n+1}}{F_{n}} \approx \phi \tag{18}
\end{equation*}
$$

which implies

$$
\begin{equation*}
F_{n} \approx c \phi^{n} \tag{19}
\end{equation*}
$$

for some n. (Problem 12. Show (19) satisfies $F_{n}+F_{n+1}=F_{n+2}$.)

Of course, we know that 19 is only an approximate formula. Now, notice why 19 satisfies $F_{n}+F_{n+1}=F_{n+2}$. As you showed in Problem 11, it is because ϕ satisfies (1). Now, notice that (1) is a quadratic equation, which has two solutions. Let's call the other solution ϕ^{\prime}. Then, it is easy to see that

$$
\begin{equation*}
F_{n}=d \phi^{\prime n} \tag{20}
\end{equation*}
$$

also satisfies $F_{n}+F_{n+1}=F_{n+2}$, for the same reason as 19 satisfies this relation. Given this, it is now easy to check that the sum of 19 and satisfies $F_{n}+F_{n+1}=F_{n+2}$. In other words,

$$
\begin{equation*}
F_{n}=c \phi^{n}+d \phi^{\prime n} \tag{21}
\end{equation*}
$$

satisfies $F_{n}+F_{n+1}=F_{n+2}$. It implies that it has the possibility of being the Fibonacci sequence, which is actually the case, as we will see.

So, let's find ϕ^{\prime}. It is given by

$$
\begin{equation*}
\phi^{\prime}=\frac{1-\sqrt{5}}{2} \tag{22}
\end{equation*}
$$

Problem 13. Show

$$
\begin{equation*}
\phi^{\prime}=1-\phi=-\frac{1}{\phi} \tag{23}
\end{equation*}
$$

Now, all we are left to do is finding c and d.
Problem 14. From $F_{n}+F_{n+1}=F_{n+2}$, show $F_{0}=0$. Then, by plugging $n=0$ to 21 . Show $d=-c$. Then, from $F_{1}=1$, show that

$$
\begin{equation*}
c=\frac{1}{\sqrt{5}}, \quad d=-\frac{1}{\sqrt{5}} \tag{24}
\end{equation*}
$$

Thus, we finally obtain

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) \tag{25}
\end{equation*}
$$

So, why does F_{n+1} / F_{n} approach $(1+\sqrt{5}) / 2$ despite the presence of the term $((1-$ $\sqrt{5}) / 2)^{n} / \sqrt{5}$?

If you actually calculate the value of ϕ^{\prime}, it is given by

$$
\begin{equation*}
\phi^{\prime}=\frac{1-\sqrt{5}}{2}=-0.61803 \cdots \tag{26}
\end{equation*}
$$

Now, notice that $\phi^{\prime n}$ approaches fast 0 , as n gets bigger and bigger. For example,

$$
\begin{equation*}
\phi^{\prime 5} \approx-0.09, \quad \phi^{10} \approx 0.008 \quad \phi^{25} \approx-6 \times 10^{-6} \tag{27}
\end{equation*}
$$

As the last term in 25 is negligible for bigger and bigger n, we have 19), which makes F_{n+1} / F_{n} approach ϕ.

Final comment. The golden ratio and the Fibonacci sequence appear in the nature. I will update this article later, after reading some materials.

Summary

- The golden ratio ϕ is defined by $\phi=1 /(\phi-1)$.
- The golden ratio appears in the ratio of some of the line segments in pentagon and the "star" in it.
- The Fibonacci sequence is defined by $F_{n}+F_{n+1}=F_{n+2}$.
- The ratio F_{n+1} / F_{n} approaches the golden ratio for large n.

[^0]: ${ }^{1}$ Figure out first what is the sum of all these angles. Then, you can divide it by 5 to obtain the angle. To figure out the sum, notice that a pentagon can be decomposed into three triangles. For example, $\triangle A B E$, $\triangle B C E, \triangle C D E$. The sum of the angles in the pentagon is equal to the sum of the angles in the three triangles.
 ${ }^{2} \triangle A B E$ is an isosceles triangle.
 ${ }^{3} \angle A B C=\angle A B E+\angle E B D+\angle C B D$.

