
Planet’s motion around the Sun

In our earlier article, we obtained that the total energy of planet is given as follows in

polar coordinate:

E =
1

2
m(ṙ2 + r2θ̇2) − GMm

r
(1)

We also saw that the angular momentum is constant as follows.

L = mr2θ̇ (2)

In other words, θ̇ = L/(mr2). If we plug this to (1), we obtain:

E =
1

2
mṙ2 +

L2

2mr2
− GMm

r
(3)

Therefore, by taking account the degree of freedom in the angular direction, we obtain an

“effective potential” for radial direction as follows:

Ueff(r) =
L2

2mr2
− GMm

r
(4)

In other words, the effective potential doesn’t contain any θ or θ̇ dependence, and the total

energy (3) can be expressed as follows:

E =
1

2
mṙ2 + Ueff(r) (5)

Now, let’s graph Ueff(r). See Fig. 1. The coefficients are chosen arbitrary. Here, we

see that the minimum of the effective potential is obtained when r = 2 with the value

Ueff(2) = −0.25. If the energy of the planet happens to be −0.25, it will sit right there at

r = 2 and the distance from the Sun will not change. In such a case, the orbit will be circular.

However, if it has a little bit higher energy, but not more than zero, the distance from the

Sun will oscillate. For example, if E is −0.2, the distance from the Sun will oscillate between

around 1.4 and 3.6, as Ueff(1.4) ≈ Ueff(3.6) ≈ 0. In such a case, the orbit will be ellipse.

However, if E is positive, the planet can move up to infinity since Ueff reaches only zero at

infinity; the planet has still extra kinetic energy to move radially. In such a case, the orbit

is hyperbola. When E is zero, the planet can move “just” up to infinity. In such a case, the

orbit if parabola, as the boundary between ellipse and hyperbola is parabola.

Given this, using an approximation, we will show that the orbit of the planets around the

Sun closes. If it doesn’t close it will move like Fig. 2. We call this phenomenon “precession

of perihelion.” Perihelion is the point in which a planet is closest to the Sun. In Fig. 2 we see
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Figure 1: Effective potential Ueff(r)
Figure 2: Precession of perihelion

that the perihelion namely precesses. Of course, we cannot call such an orbit ellipse, since

an ellipse is a closed orbit.

By approximation, I mean that we will only consider the case that the orbit is nearly

circular. In other words, when the planet is around the lowest point (i.e. stable equilibrium)

of the effective potential. To this end, we can obtain “effective” force from effective potential

as follows:

Feff(r) = −∂Ueff

∂r
=

L2

mr3
− GMm

r2
(6)

Now, let’s interpret the above formula. Using (2), we have:

Feff = mrθ̇2 − GMm

r2
(7)

The first term on the right-hand side is centrifugal force and the second term Newton’s

universal gravitational force. We have the negative sign for this term, since it is directed

inward (i.e. to the Sun). (i.e., in the direction r is decreasing)

Back to our original problem, if we call R the equilibrium position, (6) is zero when

L2 = GMm2R (8)

If your position slightly deviates from this point, you will feel a force going back to this

point just like an object connected to a spring. Given this, we will reduce our problem to

that of harmonic oscillator. To this end, let’s differentiate (6) around r = R, we get:

∂Feff

∂r
= − 3L2

mr4
+

2GMm

r3
= −3GMmR

r4
+

2GMm

r3
(9)

∂Feff

∂r
(r = R) = −GMm

R3
(10)

Therefore, if we Taylor-expand (6) around R, we have:

Feff(r) = Feff(R) +
∂Feff

∂r
(r −R) + · (11)

= −GMm

R3
(r −R) + · · · (12)
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Now, if we define x ≡ r −R, we have:

Feff = −GMm

R3
x+ · · · (13)

Therefore, for x small, in which we can ignore higher-order terms denoted by · · ·, this

is exactly harmonic oscillator problem if we identify k = GMm/R3. Now, using (9) in

“Harmonic oscillator,” we conclude that the period is given by:

T = 2π

√
R3

GM
(14)

In other words, perihelion comes to perihelion after this amount of time. However, as this

is exactly same as (4) in “Newton’s law of universal gravitation and Kepler’s third law,”

perihelion comes to perihelion after one rotation, making the orbit close.

In this article, we used approximation by Taylor-expanding, but actually it is also the

case that one gets the same result even if one doesn’t use approximation. However, that is

out of scope for this article. This is left for the next article.

Problem 1. Redo the exercise done in this article, for a hypothetical case that the force

between a planet and the Sun is inversely proportional to r4. What is the period of the orbit?

What can you conclude about its orbit?

Problem 2. In the case in which the mass of planet is not negligible compared to the

mass of Sun how is (3) changed? Use the reduced mass.

Summary

• mr̈ for the motion of planet is given by the sum of centrifugal force and the gravitational

force.

• The angular velocity dependence of the centrifugal force can be removed by expressing

the centrifugal force in terms of angular momentum which is always constant. Then,

the centrifugal force only depends on r.

• By combining the so-obtained centrifugal force and the gravitational force, we obtain

the radial effective force.

• We can then examine the planet’s motion around the equilibrium of the radial effective

force by using linear approximation. By this way, we can find the period.
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