Derivatives of the polynomials

Let $h(x)=4.3$. What is its derivative with respect to x ? Certainly,

$$
\begin{equation*}
\frac{d h}{d x}=\lim _{\Delta x \rightarrow 0} \frac{h(x+\Delta x)-h(x)}{\Delta x}=\frac{4.3-4.3}{\Delta x}=0 \tag{1}
\end{equation*}
$$

Therefore, if we take derivatives of any constant function, it is zero.
Another example: Let $f(x)=x$. What is its derivative with respect to x ?

$$
\begin{equation*}
\frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{x+\Delta x-x}{\Delta x}=1 \tag{2}
\end{equation*}
$$

In other words, the slope of $y=x$ is 1 .
How about x^{2} ?

$$
\begin{equation*}
\frac{d\left(x^{2}\right)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}=2 x+\Delta x=2 x \tag{3}
\end{equation*}
$$

How about x^{3} ? If you remember our earlier article on Pascal's triangle, you will see the following:

$$
\begin{equation*}
\frac{d\left(x^{3}\right)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x}=\frac{3 x^{2} \Delta x+3 x \Delta x^{2}+\Delta x^{3}}{\Delta x}=3 x^{2}+3 x \Delta x+\Delta x^{2}=3 x^{2} \tag{4}
\end{equation*}
$$

Similarly, using the binomial expansion as explained in "The imagination in mathematics: "Pascal's triangle, combination, and the Taylor series for square root," one can derive:

$$
\begin{equation*}
\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}, \quad \text { or } \quad\left(x^{n}\right)^{\prime}=n x^{n-1}, \tag{5}
\end{equation*}
$$

Actually, one can alternatively derive this using the method of induction. Let's do this. First, (5) is obviously satisfied for $n=1$. When $n=1$, we indeed have

$$
\begin{equation*}
\frac{d x}{d x}=1 x^{0}=1 \tag{6}
\end{equation*}
$$

Second, we need to check that (5) is satisfied for $n=m+1$, if it is satisfied for $n=m$. Let's do this. When $n=m$, we have

$$
\begin{equation*}
\frac{d x^{m}}{d x}=m x^{m-1} \tag{7}
\end{equation*}
$$

When $n=m+1$, using Leibniz's rule, we have

$$
\begin{equation*}
\frac{d\left(x^{m} x\right)}{d x}=\frac{d x^{m}}{d x} x+x^{m} \frac{d x}{d x}=m x^{m-1} x+x^{m}=m x^{m}+x^{m}=(m+1) x^{m} \tag{8}
\end{equation*}
$$

which indeed satisfies (5) for $n=m+1$. This completes the proof.

In fact, our proof is only valid for a positive integer n, but (5) holds not only when n is a positive integer, but also when n is any real number. (We will prove this in our later article "Differential and infinitesimal change.") For example:

$$
\begin{gather*}
\frac{d(\sqrt{x})}{d x}=\frac{d\left(x^{1 / 2}\right)}{d x}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \tag{9}\\
\frac{d\left(x^{-2}\right)}{d x}=-2 x^{-3} \tag{10}
\end{gather*}
$$

and so on.
Then, how can we find the derivatives of $3 x^{2}$? It is 3 times the derivatives of x^{2}. Remember that the derivative of $c f(x)$ is given by c times the derivative of $f(x)$. Thus,

$$
\begin{equation*}
\left(3 x^{2}\right)^{\prime}=3\left(x^{2}\right)^{\prime}=3 \cdot 2 x=6 x \tag{11}
\end{equation*}
$$

Now, we can easily find the derivatives of any polynomial functions. For example:

$$
\begin{equation*}
\left(5 x^{2}+3 x^{6}+4\right)^{\prime}=5 \cdot 2 x+3 \cdot 6 x^{5}=10 x+18 x^{5} \tag{12}
\end{equation*}
$$

One can also differentiate the same function multiple times. For example, if we differentiate a function f two times, we express this as:

$$
\begin{equation*}
\frac{d^{2} f}{d x^{2}} \equiv \frac{d}{d x}\left(\frac{d f}{d x}\right), \quad \text { or } \quad f^{\prime \prime} \tag{13}
\end{equation*}
$$

We pronounce $f^{\prime \prime}$ as "f two prime." For an explicit example, if $f(x)=10 x^{2}$,

$$
\begin{equation*}
\left(10 x^{2}\right)^{\prime \prime}=(20 x)^{\prime}=20 \tag{14}
\end{equation*}
$$

As another example, using Leibniz's rule, we have

$$
\begin{align*}
(x f(x))^{\prime \prime} & =\left(f(x)+x f^{\prime}(x)\right)^{\prime}=f^{\prime}(x)+\left(x f^{\prime}(x)\right)^{\prime} \\
& =f^{\prime}(x)+f^{\prime}(x)+x f^{\prime \prime}(x)=2 f^{\prime}(x)+x f^{\prime \prime}(x) \tag{15}
\end{align*}
$$

Problem 1.

$$
\begin{equation*}
\left(-\frac{1}{\sqrt{x}}-3 x^{2}+4 x\right)^{\prime}=?, \quad \frac{d^{2}\left(x^{3}+3 x+1\right)}{d x^{2}}=? \tag{16}
\end{equation*}
$$

Problem 2. $\left(\right.$ Hint $\left.^{1}\right)$

$$
\begin{equation*}
\frac{d \sqrt{2 x}}{d x}=?, \quad \frac{d^{2}\left(x^{m}\right)}{d x^{2}}=? \tag{17}
\end{equation*}
$$

Problem 3. Express $\left(x^{2} f(x)\right)^{\prime \prime}$ in terms of $x, f^{\prime}(x)$ and $f^{\prime \prime}(x)$. (Hint ${ }^{2}$)

Summary

- If we differentiate any constant function, we get zero.
- $\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$

[^0]
[^0]: ${ }^{1}$ Use $\sqrt{2 x}=\sqrt{2} \sqrt{x}$.
 ${ }^{2}$ Use Leibniz's rule.

