Derivatives of the polynomials

Let h(z) = 4.3. What is its derivative with respect to x? Certainly,
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Therefore, if we take derivatives of any constant function, it is zero.
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Another example: Let f(z) = x. What is its derivative with respect to x?

af . flz+Az)— f(z) z+Az—=x
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In other words, the slope of y = x is 1.
How about z%?
d(z?) . (v +Az)? —2?
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How about z3? If you remember our earlier article on Pascal’s triangle, you will see the

following:

d(z?) . (z+Ax)® -2 32%Az + 3xAx? + Ax?
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=322 + 3zAx + Ax? = 322 (4)

Similarly, using the binomial expansion as explained in “The imagination in mathemat-

ics: “Pascal’s triangle, combination, and the Taylor series for square root,” one can derive:
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Actually, one can alternatively derive this using the method of induction. Let’s do this.

First, (5) is obviously satisfied for n = 1. When n = 1, we indeed have

dz

—=1"=1 6

o=l (6)
Second, we need to check that (5) is satisfied for n = m + 1, if it is satisfied for n = m. Let’s

do this. When n = m, we have
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When n = m + 1, using Leibniz’s rule, we have
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which indeed satisfies (5) for n = m + 1. This completes the proof.



In fact, our proof is only valid for a positive integer n, but (5) holds not only when n is a

positive integer, but also when n is any real number. (We will prove this in our later article

“Differential and infinitesimal change.”) For example:
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and so on.
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Then, how can we find the derivatives of 322? It is 3 times the derivatives of 22. Remem-

ber that the derivative of cf(x) is given by ¢ times the derivative of f(z). Thus,
(32%) = 3(2?) =3 -2z = 6z
Now, we can easily find the derivatives of any polynomial functions. For example:

(52% 4+ 325 +4) =5- 22+ 3-62° = 10z + 182°
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One can also differentiate the same function multiple times. For example, if we differen-

tiate a function f two times, we express this as:

f _ d (df ,

We pronounce f as “f two prime.” For an explicit example, if f(z) = 1022,
(1022)" = (20x)" = 20
As another example, using Leibniz’s rule, we have

(@f(2))" = (f(z) +xf'(x)) = f'(z) + (@f (x))
= f(@) + (@) + 2f"(z) = 2f () + 2f"(2)

Problem 1. , -
1 A2 + 3z + 1)
—— —32% + 4z ) =7 — T 9
(-7 st rae) = i
Problem 2. (Hint!)
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Problem 3. Express (22 f(x))” in terms of x, f'(z) and f” (). (Hint?)
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Summary

o If we differentiate any constant function, we get zero.
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L] = nx

1Use vV2z = \/5\/5

2Use Leibniz’s rule.
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