Fundamental theorem of algebra

In our earlier article “Fundamental theorem of algebra” we stated that any non-constant
polynomial f(z) has at least one solution to f(x) = 0, and therefore, a degree n polyonomial
f(z) is completely factorizable as f(x) = ¢(x — a1)(x — az) -+ (x — a,,). In this article, we
will prove the fundamental theorem of algebra.

To prove this we first need to introduce the concept of “entire” function. A function
is called entire if it is holomorphic at every point on complex plane. For example, f(z) =
2+ 222 + 2% is entire, while g(z) = 2/(z — 1) is not as it is not holomorphic at z = 1.

We also need to introduce the concept of “bounded.” A bounded function has a maximum
limit. For example, if the maximum is M, a bounded function h(z) satisfies |h(z)| < M for
any z on entire complex plane.

Now comes an interesting result. Liouville’s theorem states that a bounded entire function
is always a constant function. This sounds reasonable, considering that a function cannot be
bounded if you have terms like z, 222, 23 in its Taylor expansion, as they become very big as
z approaches infinity. Then, the only possibility for an entire function to be bounded is that
there is only one term, a constant term in the Taylor expansion of the function. But, this is
just a gut feeling. How can we prove Liouville’s theorem rigorously?

Suppose f(z) is a bounded entire function. Then, Cauchy’s integral formula says
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where C' encircles both z = a and z = b. This is true, because the function f(z)/(z — a) has
no other poles than z = a as f(z) is an entire function. Same can be said about f(z)/(z —b).

Thus, we have
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Now, let’s choose the contour C to be a circle of radius R with its center located at z = 0.
Just like we showed in our last article that the contribution from the semi-circle can be made
arbitrarily small by taking a large radius, we will now show that the above integral can be
made arbitrarily small if we take the radius of circle arbitrarily big. As f(z) is a bounded
function, we can write |f(z)| < M for some M. Then, the above expression can be made

arbitrarily small as
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If we send R to infinty, the right side of the inequality goes to zero. Thus, we conclude
f(a) = f(b). In other words, f(z) is a constant function.

Now, we can prove the fundamental theorm of algebra. Let g(z) be a polynomial. If we
assume that it has no solution for g(z) = 0, then, 1/g(z) is an entire function, because it
has no poles, which would have made it non-differentiable at the poles. Also, as |g(z)| has
a minimum limit, |1/¢(z)| has a maximum limit. Thus, 1/g(z) is a bounded entire function,
which means that it is a constant function. In conclusion, g(z) must be a constant polynomial,
if g(z) = 0 does not have any solution. In other words, if g(z) is a non-constant polynomial,

g(z) = 0 has at least one solution.

Summary

A function is called entire if it is holomorphic at every point on complex plane.

A bounded function has a maximum limit. If the maximum is M, a bounded function

h(z) satisfies |h(z)| < M for any z on entire complex plane.

A bounded entire function is always a constant function.

If a polynomial f(z) has no zeros, 1/f(z) is a bounded entire function, which means
that it is a constant function. Therefore, unless a polynomial is a constant function, it

always has at least one solution for f(z) = 0.



