
Fundamental theorem of algebra

In our earlier article “Fundamental theorem of algebra” we stated that any non-constant

polynomial f(x) has at least one solution to f(x) = 0, and therefore, a degree n polyonomial

f(x) is completely factorizable as f(x) = c(x − a1)(x − a2) · · · (x − an). In this article, we

will prove the fundamental theorem of algebra.

To prove this we first need to introduce the concept of “entire” function. A function

is called entire if it is holomorphic at every point on complex plane. For example, f(z) =

z + 2z2 + z4 is entire, while g(z) = 2/(z − 1) is not as it is not holomorphic at z = 1.

We also need to introduce the concept of “bounded.” A bounded function has a maximum

limit. For example, if the maximum is M , a bounded function h(z) satisfies |h(z)| ≤ M for

any z on entire complex plane.

Now comes an interesting result. Liouville’s theorem states that a bounded entire function

is always a constant function. This sounds reasonable, considering that a function cannot be

bounded if you have terms like z, 2z2, z3 in its Taylor expansion, as they become very big as

z approaches infinity. Then, the only possibility for an entire function to be bounded is that

there is only one term, a constant term in the Taylor expansion of the function. But, this is

just a gut feeling. How can we prove Liouville’s theorem rigorously?

Suppose f(z) is a bounded entire function. Then, Cauchy’s integral formula says

f(a) =
1

2πi

∮
C

f(z)

z − a
dz, f(b) =

1

2πi

∮
C

f(z)

z − b
dz, (1)

where C encircles both z = a and z = b. This is true, because the function f(z)/(z − a) has

no other poles than z = a as f(z) is an entire function. Same can be said about f(z)/(z− b).
Thus, we have

f(a)− f(b) =
1

2πi

∮
C

(
f(z)

z − a
− f(z)

z − b

)
dz =

1

2πi

∮
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dz (2)

Now, let’s choose the contour C to be a circle of radius R with its center located at z = 0.

Just like we showed in our last article that the contribution from the semi-circle can be made

arbitrarily small by taking a large radius, we will now show that the above integral can be

made arbitrarily small if we take the radius of circle arbitrarily big. As f(z) is a bounded

function, we can write |f(z)| ≤ M for some M . Then, the above expression can be made

arbitrarily small as

|f(a)− f(b)| =
∣∣∣∣ 1

2πi

∮
C

f(z)(a− b)
(z − a)(z − b)

dz

∣∣∣∣ ≤ M |a− b|R
|R− a||R− b|

(3)
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If we send R to infinty, the right side of the inequality goes to zero. Thus, we conclude

f(a) = f(b). In other words, f(z) is a constant function.

Now, we can prove the fundamental theorm of algebra. Let g(z) be a polynomial. If we

assume that it has no solution for g(z) = 0, then, 1/g(z) is an entire function, because it

has no poles, which would have made it non-differentiable at the poles. Also, as |g(z)| has

a minimum limit, |1/g(z)| has a maximum limit. Thus, 1/g(z) is a bounded entire function,

which means that it is a constant function. In conclusion, g(z) must be a constant polynomial,

if g(z) = 0 does not have any solution. In other words, if g(z) is a non-constant polynomial,

g(z) = 0 has at least one solution.

Summary

• A function is called entire if it is holomorphic at every point on complex plane.

• A bounded function has a maximum limit. If the maximum is M , a bounded function

h(z) satisfies |h(z)| ≤M for any z on entire complex plane.

• A bounded entire function is always a constant function.

• If a polynomial f(z) has no zeros, 1/f(z) is a bounded entire function, which means

that it is a constant function. Therefore, unless a polynomial is a constant function, it

always has at least one solution for f(z) = 0.
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