Fundamental theorem of algebra

In our earlier article "Fundamental theorem of algebra" we stated that any non-constant polynomial $f(x)$ has at least one solution to $f(x)=0$, and therefore, a degree n polyonomial $f(x)$ is completely factorizable as $f(x)=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$. In this article, we will prove the fundamental theorem of algebra.

To prove this we first need to introduce the concept of "entire" function. A function is called entire if it is holomorphic at every point on complex plane. For example, $f(z)=$ $z+2 z^{2}+z^{4}$ is entire, while $g(z)=2 /(z-1)$ is not as it is not holomorphic at $z=1$.

We also need to introduce the concept of "bounded." A bounded function has a maximum limit. For example, if the maximum is M, a bounded function $h(z)$ satisfies $|h(z)| \leq M$ for any z on entire complex plane.

Now comes an interesting result. Liouville's theorem states that a bounded entire function is always a constant function. This sounds reasonable, considering that a function cannot be bounded if you have terms like $z, 2 z^{2}, z^{3}$ in its Taylor expansion, as they become very big as z approaches infinity. Then, the only possibility for an entire function to be bounded is that there is only one term, a constant term in the Taylor expansion of the function. But, this is just a gut feeling. How can we prove Liouville's theorem rigorously?

Suppose $f(z)$ is a bounded entire function. Then, Cauchy's integral formula says

$$
\begin{equation*}
f(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-a} d z, \quad f(b)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-b} d z \tag{1}
\end{equation*}
$$

where C encircles both $z=a$ and $z=b$. This is true, because the function $f(z) /(z-a)$ has no other poles than $z=a$ as $f(z)$ is an entire function. Same can be said about $f(z) /(z-b)$. Thus, we have

$$
\begin{equation*}
f(a)-f(b)=\frac{1}{2 \pi i} \oint_{C}\left(\frac{f(z)}{z-a}-\frac{f(z)}{z-b}\right) d z=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)(a-b)}{(z-a)(z-b)} d z \tag{2}
\end{equation*}
$$

Now, let's choose the contour C to be a circle of radius R with its center located at $z=0$. Just like we showed in our last article that the contribution from the semi-circle can be made arbitrarily small by taking a large radius, we will now show that the above integral can be made arbitrarily small if we take the radius of circle arbitrarily big. As $f(z)$ is a bounded function, we can write $|f(z)| \leq M$ for some M. Then, the above expression can be made arbitrarily small as

$$
\begin{equation*}
|f(a)-f(b)|=\left|\frac{1}{2 \pi i} \oint_{C} \frac{f(z)(a-b)}{(z-a)(z-b)} d z\right| \leq \frac{M|a-b| R}{|R-a||R-b|} \tag{3}
\end{equation*}
$$

If we send R to infinty, the right side of the inequality goes to zero. Thus, we conclude $f(a)=f(b)$. In other words, $f(z)$ is a constant function.

Now, we can prove the fundamental theorm of algebra. Let $g(z)$ be a polynomial. If we assume that it has no solution for $g(z)=0$, then, $1 / g(z)$ is an entire function, because it has no poles, which would have made it non-differentiable at the poles. Also, as $|g(z)|$ has a minimum limit, $|1 / g(z)|$ has a maximum limit. Thus, $1 / g(z)$ is a bounded entire function, which means that it is a constant function. In conclusion, $g(z)$ must be a constant polynomial, if $g(z)=0$ does not have any solution. In other words, if $g(z)$ is a non-constant polynomial, $g(z)=0$ has at least one solution.

Summary

- A function is called entire if it is holomorphic at every point on complex plane.
- A bounded function has a maximum limit. If the maximum is M, a bounded function $h(z)$ satisfies $|h(z)| \leq M$ for any z on entire complex plane.
- A bounded entire function is always a constant function.
- If a polynomial $f(z)$ has no zeros, $1 / f(z)$ is a bounded entire function, which means that it is a constant function. Therefore, unless a polynomial is a constant function, it always has at least one solution for $f(z)=0$.

