
A short introduction to quantum mechanics I: observables

and eigenvalues

This article is aimed at students with a solid knowledge of linear algebra and high
school physics. It should be suitable for college sophomores studying science or engi-
neering.

In quantum mechanics there is the concept of the ‘observable.’ An observable is
something that can be observed. There are many observables in quantum mechan-
ics, including energy, momentum, angular momentum, position, etc. Each observable
corresponds to a linear operator, in other words, a matrix. Thus there exist matrices
for energy, momentum, angular momentum, position, etc. These are more commonly
referred to as operators: energy operators, momentum operators, angular momentum
operators, position operators, etc.

There should be eigenvalues and eigenvectors corresponding to each matrix. It is
known that observed values are always eigenvalues.

Let’s say you want to measure the energy of an object. The total energy is the sum
of potential energy and kinetic energy, and there should be an energy operator (energy
matrix) corresponding to this total energy. If you calculate the eigenvalues of this energy
matrix you will get certain values. Only these values can be the energy of the object.

For example, let’s say that the eigenvalues of the energy matrix are 2J, 3J, and 5J.
This implies that the energy of the object can be 2J or 3J or 5J, but never 4J.

For a real example, let’s consider a hydrogen atom. If you know some chemistry, you
may know that the energy level of a hydrogen atom can be represented by E = −R/n2
where n is a natural number and R is the Rydberg constant. It is a well-known fact
that the energy of a hydrogen atom admits only certain values. The reason is that the
eigenvalues of a hydrogen atom’s energy matrix are given by −R/n2. As there are an
infinite number of choices for the value of n, there are an infinite number of eigenvalues.
Since the number of eigenvalues coincides with the order of a matrix, we see that the
energy matrix of a hydrogen atom is an infinity by infinity square matrix (in fact, most
linear operators, or matrices, considered in quantum mechanics are infinity by infinity
matrices).

In quantum mechanics there is also a vector corresponding to each object. These
are called “state vectors” or “wave functions.” I will now explain how they play a role
in quantum mechanics.

Let’s come back to the example of an energy matrix with eigenvalues 2J, 3J, and 5J
and corresponding eigenvectors |2J⟩, |3J⟩, and |5J⟩ (in quantum mechanics, we usually
denote vectors using this notation, called Dirac’s bra-ket notation; please see my article
entitled “Dirac’s bra-ket notation: an exposition for science and engineering students”
it for more information).

Let’s say that an object’s state vector (or wave function) is |2J⟩+ |3J⟩. This object
is in the state of half |2J⟩ and half |3J⟩. Upon observation, there is a 50% probability
that the object’s energy will be 2J and a 50 % probability that it will be 3J (notice that
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the probability that the energy will be 2.5J is zero). Also upon observation, the state
vector changes to the eigenvector of the eigenvalue corresponding to the observed value.
For example, if an observer observes the energy of this object to be 2J, then the state
vector (or wave function) changes to |2J⟩, the eigenvector of the eigenvalue 2J.

For a more concrete understanding, let me give you another example. Let’s say that
an object’s state vector is (0.6)|2J⟩ + (0.8)|5J⟩. You can see that the square of 0.6 is
0.36 and the square of 0.8 is 0.64 and that the sum of 0.36 and 0.64 is 1. Therefore, the
probability of an observer observing the energy to be 2J is 36% while the probability of
observing 5J is 64%. Also, upon observation, the state vector changes to |2J⟩ with 36%
probability and |5J⟩ with 64% probability. If the state vector changes to |2J⟩ and the
energy is measured again, the result will be 2J with 100% certainty. (This probabilistic
interpretation of quantum mechanics is called “Copenhagen interpretation.”)

The same is true for all observables, including position, angular momentum, and so
on. The state vector of an object is expanded out on the basis of eigenvectors, with the
probability of observing a given eigenvalue being the ratio of the square of the coefficient
of the corresponding eigenvector to the sum of the squares of the coefficients of all the
eigenvectors. (We will explain why the probability is proportional to the square of the
coefficient rather than the coefficient itself in “Why is the probability proportional to
the wave function squared?”. At this point, let me just mention that the coefficients
can take negative values, while their squares can only take non-negative values. As
probability must be always non-negative, it would not make sense for the probability
to be proportional to potentially negative coefficient. Furthermore, those of you who
studied freshman optics may remember that the intensity is not proportional to the
amplitude, but rather the square of the amplitude. Think along this line.)

To show you another aspect of quantum mechanics, let me mention that it is known
that position operators and momentum operators don’t commute, that is, XP − PX is
non-zero, where X is a position operator (or matrix) and P is a momentum operator
(or matrix). Therefore, as we will see later in another article, this imply that we cannot
determine an object’s position and momentum at the same time. In fact, XP − PX is
equal to ih/2π where h is the Planck constant, and from this one can derive Heisenberg’s
famous uncertainty principle.

All calculations in Heisenberg’s quantum mechanics are done with the formula XP−
PX = ih/(2π) = ih̄, while all calculations in Schrödinger’s quantum mechanics are done

with the assumption that the energy matrix is − h̄2

2m

∂2

∂x2
+ V (x) where V (x) denotes

potential energy. For example if the state vector (or wave function) is ψ(x), the state

vector multiplied by the energy matrix is − h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) (although seems to

be a function rather than a vector, it is actually both; I will explain why in my next
article).

Surprisingly, it was proven that Heisenberg’s quantum mechanics and Schrödinger’s
quantum mechanics are equivalent, and always give the same result. However, in prac-
tice, it is much easier to use Schrödinger’s quantum mechanics for most cases. In my
third article on quantum mechanics, we will learn about the simple proof of this equiv-
alency, which initially took months for Schrödinger to figure out.

Problem 1. Let’s say that an object’s wave function is 3|2J⟩ − |4J⟩. What will be
the probability of an observer observing its energy to be 4J?
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Summary

� An observable is something that can be observed. For every observable, there is a
corresponding linear operator (i.e. matrix).

� Observed values are always the eigenvalues of such a linear operator.

� For every object, there is a corresponding vector called “state vector” or ”wave
function.”

� The probability of observing a given eigenvalue is proportional to the square of
the coefficient of the corresponding eigenvector.

� Upon observation, the state vector changes to the eigenvector of the eigenvalue
corresponding to the observed value.

� Heisenberg’s quantum mechanics and Schrödinger’s quantum mechanics are equiv-
alent.

A Historical notes

Heisenberg wrote a breakthrough paper in quantum mechanics by discovering the matrix
formulation of quantum mechanics in 1925. In that paper, he argued expressions like

S(n, n− γ) =
∞∑

α=−∞

∞∑
β=−∞

U(n, n− α)U(n− α, n− α− β)U(n− α− β, n− γ). (1)

If you know matrix, you will immediately recognize that this is the component expression
of S = UUU for matrices S and U . However, Heisenberg didn’t know about matrix,
so Born, who knew about matrix, first noticed this. Using Heisenberg’s approach, Born
obtained ∑

b

XabPbc − PabXbc = ih̄, if a = c. (2)

where Xab and Pbc are components of position matrix and momentum matrix. However,
what he wanted was XP − PX = ih̄I where I is the identity matrix. In other words,
he wanted to show the following as well:∑

b

XabPbc − PabXbc = 0, if a ̸= c. (3)

As he had difficulties, he asked for help from Jordan, who solved the problem. Born
and Jordan immediately wrote a paper that included this result. In other words, XP −
PX = ih̄I. Then, Born, Heisenberg, and Jordan, all three wrote a paper together
that also includes this result among other ones. The next year, 1926, Born wrote a
paper alone that shows that the probability is proportional to the coefficient squared.
In 1933, Heisenberg received alone the Nobel Prize in Physics 1932. Recognizing Born
and Jordan’s contribution, he wrote Born that receiving the Nobel Prize alone without
them depressed him. In 1954, Max Born received the Nobel Prize for the probabilistic
interpretation, but Jordan never received the Nobel Prize.

Today, physicists do not interpretXP−PX = ih̄I as an expression to be derived, but
taken for granted. Immediately after Dirac got a copy of Heisenberg’s first paper on the
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matrix formulation of quantum mechanics, he independently obtained this expression
and found a very similar expression in classical mechanics. Physicists today take it for
granted that the classical expression is just replaced by its quantum version through
the connection Dirac found. We will talk about Dirac’s discovery in our later article
“Transition from classical mechanics to quantum Mechanics.”
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