A short introduction to quantum mechanics X : position and momentum basis and Fourier transformation

We have already noted that P, the momentum operator, acts by $-i \hbar \frac{\partial}{\partial x}$. (Some textbooks use \hat{p} for the momentum operator.) In other words, if we have:

$$
\begin{equation*}
|\psi\rangle=\int d x|x\rangle\langle x \mid \psi\rangle=\int \psi(x)|x\rangle d x \tag{1}
\end{equation*}
$$

then it follows that:

$$
\begin{equation*}
P|\psi\rangle=\int\left(-i \hbar \frac{\partial \psi(x)}{\partial x}\right)|x\rangle d x=\int d x|x\rangle\langle x| P|\psi\rangle \tag{2}
\end{equation*}
$$

Therefore, we have:

$$
\begin{equation*}
-i \hbar \frac{\partial}{\partial x}\langle x \mid \psi\rangle=\langle x| P|\psi\rangle \tag{3}
\end{equation*}
$$

Now, let's plug in $|p\rangle$, the eigenvector of the momentum matrix with eigenvalue p, for $|\psi\rangle$. We get:

$$
\begin{align*}
-i \hbar \frac{\partial}{\partial x}\langle x \mid p\rangle & =\langle x| P|p\rangle \\
-i \hbar \frac{\partial}{\partial x}\langle x \mid p\rangle & =\langle x| p|p\rangle \\
-i \hbar \frac{\partial}{\partial x}\langle x \mid p\rangle & =p\langle x \mid p\rangle \tag{4}
\end{align*}
$$

To transition from the second line to the third line, we used the fact that p is merely a number, since it's an eigenvalue.

So, this is a differential equation for $\langle x \mid p\rangle$ and the solution is given by:

$$
\begin{equation*}
\langle x \mid p\rangle=C e^{i p x / \hbar} \tag{5}
\end{equation*}
$$

Then we can say:

$$
\begin{equation*}
|p\rangle=\int d x|x\rangle\langle x \mid p\rangle=\int d x|x\rangle C e^{i p x / \hbar} \tag{6}
\end{equation*}
$$

Given this, I will now explain the relation between wave functions written in the position basis and those written in the momentum basis. We may write a wave function $|\psi\rangle$ as follows:

$$
\begin{equation*}
|\psi\rangle=\int d x|x\rangle\langle x \mid \psi\rangle=\int d x \psi(x)|x\rangle \tag{7}
\end{equation*}
$$

In the momentum basis, the same wave function $|\psi\rangle$ can be expressed as follows:

$$
\begin{equation*}
|\psi\rangle=\int d p|p\rangle\langle p \mid \psi\rangle=\int d p \phi(p)|p\rangle \tag{8}
\end{equation*}
$$

where $\phi(p)=\langle p \mid \psi\rangle$
Now, observe:

$$
\begin{align*}
\langle x \mid \psi\rangle & =\int\langle x \mid p\rangle\langle p \mid \psi\rangle d p \tag{9}\\
\psi(x) & =\int C \phi(p) e^{i p x / \hbar} d p \tag{10}
\end{align*}
$$

Given the above formula, could we express $\phi(p)$ in terms of $\psi(x)$? If you are careful enough, you will see that it is just a Fourier transformation problem. So, roughly speaking, we should have, $\phi(p) \sim \int \psi(x) e^{-i p x / \hbar} d p$ with an overall factor to be determined. Remarkably, it is possible to reproduce this as follows:

$$
\begin{align*}
\langle p \mid \psi\rangle & =\int\langle p \mid x\rangle\langle x \mid \psi\rangle d x \tag{11}\\
\phi(p) & =\int C^{*} \psi(x) e^{-i p x / \hbar} d x \tag{12}
\end{align*}
$$

where we have used the fact that $\langle p \mid x\rangle=\langle x \mid p\rangle^{*}$. So, we have reproduced the so-called inverse Fourier transformation as advertised!

By comparing (10) and (12) with (6) and (7) of my article "Fourier transformations" and assuming that C is real without a loss of generality, we can get $C=1 /(\sqrt{2 \pi \hbar})$. The fact that $\langle x \mid p\rangle$ is proportional to $e^{i p x / \hbar}$ makes sense, as it leads to the correct Fourier transformations; we see that quantum mechanics is mathematically consistent. If you study physics and math further, you will frequently encounter such beautiful consistencies!

To summarize, we derived:

$$
\begin{align*}
\psi(x) & =\int \frac{d p}{\sqrt{2 \pi \hbar}} \phi(p) e^{i p x / \hbar} \tag{13}\\
\phi(p) & =\int \frac{d x}{\sqrt{2 \pi \hbar}} \psi(x) e^{-i p x / \hbar} \tag{14}
\end{align*}
$$

So far, in position basis, we have seen that X acts by multiplying the position-space wave function by x and P acts by $-i \hbar \frac{\partial}{\partial x}$ where the positionspace wave function for a state $|\psi\rangle$ is given by $\langle x \mid \psi\rangle$. Then, a natural
question to ask is how X and P act on the momentum-space wave function $\langle p \mid \psi\rangle$.

How P acts is easy. We have:

$$
\begin{equation*}
\langle p| P|\psi\rangle=(\langle p| P)|\psi\rangle=p\langle p \mid \psi\rangle \tag{15}
\end{equation*}
$$

where we have used $P|p\rangle=p|p\rangle$. In other words, P acts by multiplying by p.

To figure out how X acts, let's consider the following equation. (Problem 1. Prove this! Hint: Insert $I=\int d x|x\rangle\langle x|$ between $e^{i a X}$ and $|p\rangle$)

$$
\begin{equation*}
e^{i a X}|p\rangle=|p+\hbar a\rangle \tag{16}
\end{equation*}
$$

For infinitesimal $a=\Delta p / \hbar$, the above equation implies

$$
\begin{align*}
e^{i \Delta p X / \hbar}|p\rangle & =|p+\Delta p\rangle \\
\left(1+\frac{i \Delta p X}{\hbar}\right)|p\rangle & =|p+\Delta p\rangle \\
\frac{i \Delta p X}{\hbar}|p\rangle & =|p+\Delta p\rangle-|p\rangle \tag{17}
\end{align*}
$$

Given this, we have:

$$
\begin{align*}
|\psi\rangle & =\int d p|p\rangle\langle p \mid \psi\rangle=\int d p|p\rangle \psi(p) \\
\frac{i \Delta p X}{\hbar}|\psi\rangle & =\int d p \frac{i \Delta p X}{\hbar}|p\rangle\langle p \mid \psi\rangle \\
& =\int d p(|p+\Delta p\rangle-|p\rangle)\langle p \mid \psi\rangle \\
& =\int d p|p+\Delta p\rangle\langle p \mid \psi\rangle-\int d p|p\rangle\langle p \mid \psi\rangle \\
& =\int d p|p\rangle\langle p-\Delta p \mid \psi\rangle-\int d p|p\rangle\langle p \mid \psi\rangle \\
& =\int d p(\psi(p-\Delta p)-\psi(p))|p\rangle \\
\frac{i \Delta p X}{\hbar}|\psi\rangle & =\int d p\left(-\frac{\partial \psi}{\partial p} \Delta p\right)|p\rangle \\
X|\psi\rangle & =\int d p\left(i \hbar \frac{\partial \psi}{\partial p}\right)|p\rangle \tag{18}
\end{align*}
$$

Therefore, we see that, in the momentum basis, the position operator X acts by $i \hbar \frac{\partial}{\partial p}$. Summarizing, we have:

$$
\begin{align*}
X \psi(p) & =i \hbar \frac{\partial \psi(p)}{\partial p} \tag{19}\\
P \psi(p) & =p \psi(p) \tag{20}
\end{align*}
$$

where $\psi(p)=\langle p \mid \psi\rangle$.
Problem 2. Check $X P-P X=i \hbar$ in momentum basis.
Compare (19) and (20) with the following formulas for the familiar position basis:

$$
\begin{align*}
X \psi(x) & =x \psi(x) \tag{21}\\
P \psi(x) & =-i \hbar \frac{\partial \psi(x)}{\partial x} \tag{22}
\end{align*}
$$

where $\psi(x)=\langle x \mid \psi\rangle$. We see that there is a symmetry upon simultaneous exchange of x for p and of i for $-i$.

Finally, let me conclude this article with some observations on Dirac delta function. Changing the integration variable from x to x^{\prime} in (14), and plugging this to (13), we obtain:

$$
\begin{equation*}
\psi(x)=\int d x^{\prime} \psi\left(x^{\prime}\right)\left(\int \frac{d p}{2 \pi \hbar} e^{i p\left(x-x^{\prime}\right) / \hbar}\right) \tag{23}
\end{equation*}
$$

Therefore, we conclude:

$$
\begin{equation*}
\delta\left(x-x^{\prime}\right)=\int \frac{d p}{2 \pi \hbar} e^{i p\left(x-x^{\prime}\right) / \hbar} \tag{24}
\end{equation*}
$$

Therefore, we see that the condition that one must come back to the original function, if one Fourier-transform and inverse-Fourier-transform it, yields a formula for Dirac delta function.

In other words, we derived an explicit formula for delta function as follows:

$$
\begin{equation*}
\delta(x)=\int \frac{d p}{2 \pi} e^{i p x} \tag{25}
\end{equation*}
$$

Actually, we can derive this equation more easily as follows:

$$
\begin{align*}
\delta\left(x-x^{\prime}\right) & =\left\langle x \mid x^{\prime}\right\rangle=\int d p\langle x \mid p\rangle\left\langle p \mid x^{\prime}\right\rangle \\
& =\int \frac{d p}{2 \pi \hbar} e^{i p\left(x-x^{\prime}\right) / \hbar} \tag{26}
\end{align*}
$$

Now more problems. Consider a wave function $\phi(x)$ as follows:

$$
\begin{equation*}
\phi(x)=C_{1} \exp \left[i k x-\frac{x^{2}}{2 d^{2}}\right] \tag{27}
\end{equation*}
$$

Problem 3. Use Taylor series to show

$$
\begin{equation*}
e^{i P a / \hbar} \psi(x)=\psi(x+a) \tag{28}
\end{equation*}
$$

In other words, the momentum operator P moves the position of the wave function by a certain amount. Thus, we say P generates "translation" (i.e.
the movement of position). In the next article, we will see that the Hamiltonian operator H moves the time of the wave function. In other words, we say H generates "time evolution."

Problem 4. Show that the probability density function for position due to (27) is given by a normal (i.e. a Gaussian) distribution. (Hint: See our earlier article "Probability density function.") Thus, we call such a wave "Gaussian wave packet."

Problem 5. Obtain, C_{1} by assuming that $\phi(x)$ is properly normalized.
Problem 6. Find Δx, the standard deviation of the position x, in terms of d. Find the expectation value of the momentum p without Fouriertransforming $\phi(x)$. Find the expectation value of p^{2} similarly. Thus, obtain Δp, the standard deviation of the momentum.

Problem 7. Fourier transform $\phi(x)$ to obtain $\psi(p)$, the wave function in momentum space. Thus, show that the probability density function in the momentum space is also given by a normal distribution. From this, obtain the expectation value of p and the standard deviation Δp again. Check that they agree with the values you obtained using the wave function in position basis. Check also that following holds.

$$
\begin{equation*}
\Delta x \Delta p=\frac{\hbar}{2} \tag{29}
\end{equation*}
$$

This, you found in case of Gaussian packet. Generally, the following holds:

$$
\begin{equation*}
\Delta x \Delta p \geq \frac{\hbar}{2} \tag{30}
\end{equation*}
$$

This is called "Heisenberg's uncertainty principle." We will talk more about this in a later article.

Summary

- $\langle x \mid p\rangle$ is proportional to $e^{i p x / \hbar}$.
- The relation between position basis and momentum basis is that of Fourier transformation and inverse Fourier transformation.

