
A short introduction to quantum mechanics X:

position and momentum basis

and Fourier transformation

We have already noted that P , the momentum operator, acts by −ih̄ ∂
∂x

.

(Some textbooks use p̂ for the momentum operator.) In other words, if we
have:

|ψ〉 =

∫
dx|x〉〈x|ψ〉 =

∫
ψ(x)|x〉dx (1)

then it follows that:

P |ψ〉 =

∫ (
−ih̄∂ψ(x)

∂x

)
|x〉dx =

∫
dx|x〉〈x|P |ψ〉 (2)

Therefore, we have:

−ih̄ ∂
∂x
〈x|ψ〉 = 〈x|P |ψ〉 (3)

Now, let’s plug in |p〉, the eigenvector of the momentum matrix with
eigenvalue p, for |ψ〉. We get:

−ih̄ ∂
∂x
〈x|p〉 = 〈x|P |p〉

−ih̄ ∂
∂x
〈x|p〉 = 〈x|p|p〉

−ih̄ ∂
∂x
〈x|p〉 = p〈x|p〉 (4)

To transition from the second line to the third line, we used the fact that p
is merely a number, since it’s an eigenvalue.

So, this is a differential equation for 〈x|p〉 and the solution is given by:

〈x|p〉 = Ceipx/h̄ (5)

Then we can say:

|p〉 =

∫
dx|x〉〈x|p〉 =

∫
dx|x〉Ceipx/h̄ (6)
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Given this, I will now explain the relation between wave functions written
in the position basis and those written in the momentum basis. We may
write a wave function |ψ〉 as follows:

|ψ〉 =

∫
dx|x〉〈x|ψ〉 =

∫
dxψ(x)|x〉 (7)

In the momentum basis, the same wave function |ψ〉 can be expressed as
follows:

|ψ〉 =

∫
dp|p〉〈p|ψ〉 =

∫
dpφ(p)|p〉 (8)

where φ(p) = 〈p|ψ〉
Now, observe:

〈x|ψ〉 =

∫
〈x|p〉〈p|ψ〉dp (9)

ψ(x) =

∫
Cφ(p)eipx/h̄dp (10)

Given the above formula, could we express φ(p) in terms of ψ(x)? If you
are careful enough, you will see that it is just a Fourier transformation prob-
lem. So, roughly speaking, we should have, φ(p) ∼

∫
ψ(x)e−ipx/h̄dp with an

overall factor to be determined. Remarkably, it is possible to reproduce this
as follows:

〈p|ψ〉 =

∫
〈p|x〉〈x|ψ〉dx (11)

φ(p) =

∫
C∗ψ(x)e−ipx/h̄dx (12)

where we have used the fact that 〈p|x〉 = 〈x|p〉∗. So, we have reproduced
the so-called inverse Fourier transformation as advertised!

By comparing (10) and (12) with (6) and (7) of my article “Fourier
transformations” and assuming that C is real without a loss of generality,
we can get C = 1/(

√
2πh̄). The fact that 〈x|p〉 is proportional to eipx/h̄

makes sense, as it leads to the correct Fourier transformations; we see that
quantum mechanics is mathematically consistent. If you study physics and
math further, you will frequently encounter such beautiful consistencies!

To summarize, we derived:

ψ(x) =

∫
dp√
2πh̄

φ(p)eipx/h̄ (13)

φ(p) =

∫
dx√
2πh̄

ψ(x)e−ipx/h̄ (14)

So far, in position basis, we have seen that X acts by multiplying the
position-space wave function by x and P acts by −ih̄ ∂

∂x where the position-
space wave function for a state |ψ〉 is given by 〈x|ψ〉. Then, a natural
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question to ask is how X and P act on the momentum-space wave function
〈p|ψ〉.

How P acts is easy. We have:

〈p|P |ψ〉 = (〈p|P )|ψ〉 = p〈p|ψ〉 (15)

where we have used P |p〉 = p|p〉. In other words, P acts by multiplying by
p.

To figure out howX acts, let’s consider the following equation. (Problem
1. Prove this! Hint: Insert I =

∫
dx|x〉〈x| between eiaX and |p〉)

eiaX |p〉 = |p+ h̄a〉 (16)

For infinitesimal a = ∆p/h̄, the above equation implies

ei∆pX/h̄|p〉 = |p+ ∆p〉

(1 +
i∆pX

h̄
)|p〉 = |p+ ∆p〉

i∆pX

h̄
|p〉 = |p+ ∆p〉 − |p〉 (17)

Given this, we have:

|ψ〉 =

∫
dp|p〉〈p|ψ〉 =

∫
dp|p〉ψ(p)

i∆pX

h̄
|ψ〉 =

∫
dp
i∆pX

h̄
|p〉〈p|ψ〉

=

∫
dp(|p+ ∆p〉 − |p〉)〈p|ψ〉

=

∫
dp|p+ ∆p〉〈p|ψ〉 −

∫
dp|p〉〈p|ψ〉

=

∫
dp|p〉〈p−∆p|ψ〉 −

∫
dp|p〉〈p|ψ〉

=

∫
dp(ψ(p−∆p)− ψ(p))|p〉

i∆pX

h̄
|ψ〉 =

∫
dp

(
−∂ψ
∂p

∆p

)
|p〉

X|ψ〉 =

∫
dp

(
ih̄
∂ψ

∂p

)
|p〉 (18)

Therefore, we see that, in the momentum basis, the position operator X

acts by ih̄
∂

∂p
. Summarizing, we have:

Xψ(p) = ih̄
∂ψ(p)

∂p
(19)

Pψ(p) = pψ(p) (20)
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where ψ(p) = 〈p|ψ〉.
Problem 2. Check XP − PX = ih̄ in momentum basis.
Compare (19) and (20) with the following formulas for the familiar po-

sition basis:

Xψ(x) = xψ(x) (21)

Pψ(x) = −ih̄∂ψ(x)

∂x
(22)

where ψ(x) = 〈x|ψ〉. We see that there is a symmetry upon simultaneous
exchange of x for p and of i for −i.

Finally, let me conclude this article with some observations on Dirac
delta function. Changing the integration variable from x to x′ in (14), and
plugging this to (13), we obtain:

ψ(x) =

∫
dx′ψ(x′)

(∫
dp

2πh̄
eip(x−x′)/h̄

)
(23)

Therefore, we conclude:

δ(x− x′) =

∫
dp

2πh̄
eip(x−x′)/h̄ (24)

Therefore, we see that the condition that one must come back to the original
function, if one Fourier-transform and inverse-Fourier-transform it, yields a
formula for Dirac delta function.

In other words, we derived an explicit formula for delta function as fol-
lows:

δ(x) =

∫
dp

2π
eipx (25)

Actually, we can derive this equation more easily as follows:

δ(x− x′) = 〈x|x′〉 =

∫
dp〈x|p〉〈p|x′〉

=

∫
dp

2πh̄
eip(x−x′)/h̄ (26)

Now more problems. Consider a wave function φ(x) as follows:

φ(x) = C1 exp

[
ikx− x2

2d2

]
(27)

Problem 3. Use Taylor series to show

eiPa/h̄ψ(x) = ψ(x+ a) (28)

In other words, the momentum operator P moves the position of the wave
function by a certain amount. Thus, we say P generates “translation” (i.e.
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the movement of position). In the next article, we will see that the Hamil-
tonian operator H moves the time of the wave function. In other words, we
say H generates “time evolution.”

Problem 4. Show that the probability density function for position due
to (27) is given by a normal (i.e. a Gaussian) distribution. (Hint: See our
earlier article “Probability density function.”) Thus, we call such a wave
“Gaussian wave packet.”

Problem 5. Obtain, C1 by assuming that φ(x) is properly normalized.
Problem 6. Find ∆x, the standard deviation of the position x, in

terms of d. Find the expectation value of the momentum p without Fourier-
transforming φ(x). Find the expectation value of p2 similarly. Thus, obtain
∆p, the standard deviation of the momentum.

Problem 7. Fourier transform φ(x) to obtain ψ(p), the wave function
in momentum space. Thus, show that the probability density function in the
momentum space is also given by a normal distribution. From this, obtain
the expectation value of p and the standard deviation ∆p again. Check that
they agree with the values you obtained using the wave function in position
basis. Check also that following holds.

∆x∆p =
h̄

2
(29)

This, you found in case of Gaussian packet. Generally, the following holds:

∆x∆p ≥ h̄

2
(30)

This is called “Heisenberg’s uncertainty principle.” We will talk more about
this in a later article.

Summary

• 〈x|p〉 is proportional to eipx/h̄.

• The relation between position basis and momentum basis is that of
Fourier transformation and inverse Fourier transformation.
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