
A short introduction to quantum mechanics XII:

Heisenberg’s uncertainty principle

Heisenberg’s uncertainty principle asserts that the more precisely you
know an object’s position, the less precisely you know its momentum and
vice versa. This fact can be derived rigorously by mathematics. In this
article, we explain Heisenberg’s uncertainty principle and mathematically
derive it.

Suppose an object traveling with a certain, exact, velocity in the positive
x-direction. In other words, it is traveling with a certain, exact momentum.
This would imply that the wave function of the object is the eigenstate of
the momentum operator. If you recall what we have discussed in our last
article, you will see that the wave function in this case should be given as
follows:

ψ = C(cos(ipx/h̄) + i sin(ipx/h̄)) (1)

Let’s draw this wave function. See Fig. 1. For simplicity, we have only
drawn the imaginary part of the wave function. So, the momentum of the
object has a certain, exact value. On the other hand, it would be hard to
locate its position. Where is it located? At x = −6? x = −3? x = 0? x = 4?
There is no fixed location, and it has actually equal probability to be found
anywhere! As just stated in the beginning of the article, as we know the
object’s momentum very precisely, we cannot locate its position precisely.
Heisenberg’s uncertainty principle is mathematically stated as follows:

∆x∆px ≥
h̄

2
, ∆y∆py ≥

h̄

2
, ∆z∆pz ≥

h̄

2
, ∆E∆t ≥ h̄

2
(2)

where ∆x is the standard deviation of the x-position, and ∆px is the stan-
dard deviation of the x-momentum and so on.

In our case for Fig. 1. ∆px = 0, which forces ∆x =∞ from above equa-
tion. On the other hand, see Fig. 2, which is somewhat the opposite case of
Fig. 1. The object is well-located at x = 0 with ∆x roughly being around
1. However, the value for the wavelength cannot be quite well-determined,
since there are only 3 ∼ 4 oscillations. So, the standard deviation of the
wavelength is big. (After all, if it were zero, we would have had Fig. 1.)
Since the wavelength gives the value for the momentum by the de-Broglie
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formula, (p = h/λ) we can say that the standard deviation of the momen-
tum is large. Again, we recover our assertion that the more precisely you
know an object’s location, the less precisely you know its momentum.

For just one more example, we have our third case Fig. 3. Its ∆x is
smaller than that of Fig. 1 while bigger than that of Fig. 3. Therefore,
according to (2), it is allowed that Fig. 2’s ∆px is bigger than that of Fig.
1 while smaller than that of Fig. 3. This is actually the case. Fig. 3 looks
closer to Fig. 1 than Fig. 2 does. Therefore, Fig. 2’s ∆x and ∆px are
between those of Fig. 1 and Fig. 2.

Now, let’s derive Heisenberg’s uncertainty principle. To this end, we
must first recall Cauchy-Schwarz inequality. In one of the exercises in
our earlier article “The dot product,” you essentially proved that Cauchy-
Schwarz inequality can be written as

|~u|2|~v|2 ≥ (~u · ~v)2 (3)

In case of complex vector space, this becomes

|~u|2|~v|2 ≥ |~u · ~v|2 (4)

Otherwise, the right-hand side of (3) can be a number that is not real, which
is problematic, as we cannot compare whether a number is bigger or smaller
for an imaginary number.

Problem 1. Let’s denote the expectation value of an operator O by
〈O〉 ≡ 〈ψ|O|ψ〉. Let A and B two Hermitian operators. By plugging in
~u = A|ψ〉 and ~v = B|ψ〉 into (4), show that

(〈A〉〈B〉)2 ≥ |〈AB〉|2 (5)

Problem 2. Let 〈AB〉 ≡ 〈ψ|AB|ψ〉 = f +gi. Then, show the following:

〈BA〉 ≡ 〈ψ|BA|ψ〉 = f − gi (6)

1

2
〈[A,B]〉 ≡ 1

2
〈ψ|[A,B]|ψ〉 = gi (7)

Problem 3. Show that the right-hand side of (5) is given by

|〈AB〉|2 = f2 + g2 (8)

Problem 4. By combining (7) and (8), show that

|〈AB〉|2 ≥ 1

4
|〈[A,B]〉|2 (9)

Thus, by combining (5) and (9), we obtain

(〈A〉〈B〉)2 ≥ 1

4
|〈[A,B]〉|2 (10)

3



Now, let

A = ∆x ≡ x− 〈x〉, B = ∆px ≡ px − 〈px〉 (11)

since 〈x〉 and 〈px〉 are mere numbers, we have:

[A,B] = [x− 〈x〉, px − 〈px〉] = [x, p] = ih̄ (12)

Problem 6. By plugging in (11) and (12) into (10), show that

〈∆x〉〈∆px〉 ≥
h̄

2
(13)

In other words, we just proved the first relation in (2). We can prove the
second and the third relations similarly, from [y, py] = [z, pz] = ih̄. However,
we cannot prove ∆E∆t ≥ h̄/2 using this method; t is just a coordinate, not
an operator. Nevertheless, it sounds reasonable, if you look at this from the
point of view of Fourier transformation. Let me clarify what I mean. If we
write

ψ(x, y, z, t) =

∫
dEdpxdpydpz

(2πh̄)2
φ(E, px, py, pz)e

i(pxx+pyy+pzz−Et)/h̄ (14)

then, Heisenberg’s uncertainty principle says that there are following rela-
tions between ψ and φ.(∫

x2ψψ∗dx−
(∫

xψψ∗dx

)2
)(∫

p2
xφφ

∗dpx −
(∫

pxφφ
∗dpx

)2
)
≥ h̄2

4

In other words, this is a relation that says about a property of Fourier trans-
formation. As this property must be satisfied for other conjugate variables
for Fourier transformation, we can write(∫

t2ψψ∗dt−
(∫

tψψ∗dt

)2
)(∫

E2φφ∗dE −
(∫

Eφφ∗dE

)2
)
≥ h̄2

4

which implies ∆E∆t ≥ h̄/2.
Final comment. Notice that plugging A = ∆y, B = ∆pz into (10) yields:

∆y∆pz ≥ 0 (15)

Therefore, if the component measured for the position and the one for the
momentum are different, there is no restriction for uncertainty; knowing
the y-position of an object doesn’t hinder from knowing its z-momentum
precisely. Similarly, from [x, y] = [x, z] = [y, z] = 0, we have

∆x∆y ≥ 0, ∆x∆z ≥ 0, ∆y∆z ≥ 0 (16)
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Therefore, we see that knowing the exact x-position of a particle doesn’t
hinder from knowing its exact y-position or its exact z-position and vice
versa. Thus, there can be a state that has a certain x-position, a certain
y-position, and a certain z-position (i.e., ∆x = ∆y = ∆z = 0) at the same
time. This state is the eigenstate (eigenvector) of the x-position operator,
the y-position operator and the z-position operator. If we denote this state
by |x, y, z〉, we have

x̂|x, y, z〉 = x|x, y, z〉, ŷ|x, y, z〉 = y|x, y, z〉, ẑ|x, y, z〉 = z|x, y, z〉 (17)

What we just said is true for the momentum. As [px, py] = [px, pz] =
[py, pz] = 0, we have

∆px∆py ≥ 0, ∆px∆pz ≥ 0, ∆py∆pz ≥ 0 (18)

and we can have eigenstates of p̂x, p̂y and p̂z at the same time as follows.

p̂x|px, py, pz〉 = px|px, py, pz〉, p̂y|px, py, pz〉 = py|px, py, pz〉
p̂z|px, py, pz〉 = pz|px, py, pz〉 (19)

However, we cannot have a state that is an eigenstate of x̂ and p̂x at the
same time. An eigenstate of x̂ satisfies 〈∆x〉 = 0 and an eigenstate of p̂x
satisfies 〈∆px〉 = 0. If a state is an eigenstate of x̂ and p̂x at the same time,
it violates Heisenberg’s uncertainty principle, as ∆x∆px would be zero. It
is not hard to see this, even if you didn’t know Heisenberg’s uncertainty
principle. Suppose there is such an eigenstate |x, px〉. Then, we have

x̂|x, px〉 = x|x, px〉, p̂x|x, px〉 = px|x, px〉 (20)

which implies

x̂p̂x|x, px〉 = x̂px|x, px〉 = pxx̂|x, px〉 = pxx|x, px〉 = xpx|x, px〉 (21)

where we used the fact that px and x are numbers, not operators. Similarly,

p̂xx̂|x, px〉 = p̂xx|x, px〉 = xp̂x|x, px〉 = xpx|x, px〉 (22)

Combining (21) and (22), we obtain

[x̂, p̂x]|x, px〉 = x̂p̂x|x, px〉 − p̂xx̂|x, px〉 (23)

= xpx|ψ〉 − xpx|ψ〉 = 0 (24)

However, the left-hand side of (23) is ih̄|x, px〉. Thus, we obtain

ih̄|x, px〉 = 0 (25)

In other words, there is no state that is an eigenstate of x and px at the
same time.
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Anyhow, we have seen that there can be a state that has a fixed 3-
dimensional position and a state that has a fixed 3-dimensional momentum.
Then, you may ask, can there be a state that has a fixed 3-dimensional
angular momentum? We will answer this question in “Angular momentum
in quantum mechanics.”

Summary

• Heisenberg’s uncertainty relation is given by

∆x∆px ≥
h̄

2
, ∆y∆py ≥

h̄

2
, ∆z∆pz ≥

h̄

2
, ∆E∆t ≥ h̄

2

• It can be derived using Cauchy-Schwarz inequality.
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