A short introduction to quantum mechanics III: the equivalence between Heisenberg's matrix method and Schrödinger's differential equation

In the article "A short introduction to quantum mechanics I: observables and eigenvalues," I explained that Heisenberg's quantum mechanics is based on the formula $X P-P X=i \hbar$, where X is the position operator and P is the momentum operator, while Schrödinger's quantum mechanics is based on the idea that the energy matrix is $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)$. I claimed, without proof, that the two formalisms are equivalent. In this article, I will concretely show that they are indeed equivalent.

The key idea to understanding this is that $X P-P X=i \hbar$ can be satisfied if the position operator X corresponds to multiplying the wave function by x, while the momentum operator P corresponds to $-i \hbar \frac{\partial}{\partial x}$ (differentiating with respect to x and multiplying by $-i \hbar)$. Now, let's see how this corresponds to Heisenberg's quantum mechanics. If we apply the momentum operator P to the vector $\psi(x)$, we get $P \psi(x)=-i \hbar \frac{\partial \psi(x)}{\partial x}$. If we then apply the position operator X to this, we get $-i \hbar x \frac{\partial \psi(x)}{\partial x}$. In other words:

$$
\begin{equation*}
X P \psi(x)=-i \hbar x \frac{\partial \psi(x)}{\partial x} \tag{1}
\end{equation*}
$$

Similarly we can easily obtain

$$
\begin{gather*}
X \psi(x)=x \psi(x) \tag{2}\\
P X \psi(x)=P(X \psi(x))=-i \hbar \frac{\partial(x \psi(x))}{\partial x}=-i \hbar\left(\psi(x)+x \frac{\partial \psi(x)}{\partial x}\right) \tag{3}
\end{gather*}
$$

One more step forward, we get:

$$
\begin{equation*}
(X P-P X) \psi(x)=i \hbar \psi(x) \tag{4}
\end{equation*}
$$

In other words, $X P-P X=i \hbar$. This is Heisenberg's matrix method. Indeed the condition $X P-P X=i \hbar$ is equal to the condition that the position operator X corresponds to multiplying the wave function by x and the momentum operator P corresponds to $-i \hbar \frac{\partial}{\partial x}$.

Now, let's derive Schrödinger's equation. In classical mechanics, mechanical energy is

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}+V(x)=\frac{(m v)^{2}}{2 m}+V(x)=\frac{p^{2}}{2 m}+V(x) \tag{5}
\end{equation*}
$$

Putting this into the language of operators, p^{2} means applying P twice to the vector $\psi(x)$, while $V(x)$ means multiplying $\psi(x)$ by $V(x)$. In other words, p^{2} is $-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}$ If
we divide this by $2 m$ and add $V(x)$ we obtain the energy matrix. If we then apply the energy matrix to the vector $\psi(x)$, we get:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x) \tag{6}
\end{equation*}
$$

We can get the eigenvalues and the eigenvectors of this energy matrix by solving the equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x) \tag{7}
\end{equation*}
$$

where E is the eigenvalue.
At this point, we would like to introduce commutator. A commutator of A and B is defined by $A B-B A$ and denoted as $[A, B]$, For example, our earlier formula can be re-written as follows:

$$
\begin{equation*}
[X, P]=i \hbar \tag{8}
\end{equation*}
$$

Problem 1. Prove the followings.

$$
\begin{gather*}
{[A, B]=-[B, A], \quad[A, A]=0} \tag{9}\\
{[A, B+C]=[A, B]+[A, C], \quad[A+B, C]=[A, C]+[B, C]} \tag{10}\\
{[A+B, C+D]=[A, C]+[B, C]+[A, D]+[B, D]} \tag{11}\\
{[c A, d B]=c d[A, B], \quad \text { where } c \text { and } d \text { are numbers }} \tag{12}
\end{gather*}
$$

Problem 2. Use (11) and (12) to prove the following.

$$
\begin{equation*}
[A+B i, A-B i]=i[B, A]-i[A, B]=2 i[B, A] \tag{13}
\end{equation*}
$$

Problem 3. Prove the followings.

$$
\begin{align*}
{[A B, C] } & =A[B, C]+[A, C] B \tag{14}\\
{[D, E F] } & =[D, E] F+E[D, F] \tag{15}
\end{align*}
$$

Problem 4. Using (14) and (15), prove the followings:

$$
\begin{align*}
& {\left[X^{2}, P_{x}\right]=2 i \hbar X} \tag{16}\\
& {\left[X, P_{x}^{2}\right]=2 i \hbar P_{x}} \tag{17}
\end{align*}
$$

Problem 5. Using Leibniz rule and $P \psi(x)=-i \hbar \frac{\partial \psi(x)}{\partial x}$, prove the following:

$$
\begin{equation*}
\left[f(X), P_{x}\right]=i \hbar \frac{\partial f(x)}{\partial x} \tag{18}
\end{equation*}
$$

(Hint ${ }^{1}$) Notice that we could have obtained (16) using the above formula.

Summary

- A commutator of A and B is defined by $A B-B A$ and denoted as $[A, B]$.

[^0]- $[X, P]=i \hbar$.
- The position operator X acts by multiplying x.
- The momentum operator P_{x} acts by $-i \hbar \frac{\partial}{\partial x}$.
- $[A, B]=-[B, A], \quad[A, A]=0$
- $[A B, C]=A[B, C]+[A, C] B$
- $[D, E F]=[D, E] F+E[D, F]$

[^0]: ${ }^{1}$ Show $\left[f(X), P_{x}\right] \psi=i \hbar \frac{\partial f(x)}{\partial x} \psi$

