
A short introduction to quantum mechanics III:

the equivalence between Heisenberg’s matrix method and

Schrödinger’s differential equation

In the article “A short introduction to quantum mechanics I: observables and eigen-
values,” I explained that Heisenberg’s quantum mechanics is based on the formula
XP − PX = ih̄, where X is the position operator and P is the momentum opera-
tor, while Schrödinger’s quantum mechanics is based on the idea that the energy matrix

is − h̄2

2m

∂2

∂x2
+ V (x). I claimed, without proof, that the two formalisms are equivalent.

In this article, I will concretely show that they are indeed equivalent.
The key idea to understanding this is that XP−PX = ih̄ can be satisfied if the posi-

tion operatorX corresponds to multiplying the wave function by x, while the momentum

operator P corresponds to −ih̄ ∂
∂x

(differentiating with respect to x and multiplying by

−ih̄). Now, let’s see how this corresponds to Heisenberg’s quantum mechanics. If we

apply the momentum operator P to the vector ψ(x), we get Pψ(x) = −ih̄∂ψ(x)
∂x

. If we

then apply the position operator X to this, we get −ih̄x∂ψ(x)
∂x

. In other words:

XPψ(x) = −ih̄x∂ψ(x)
∂x

(1)

Similarly we can easily obtain

Xψ(x) = xψ(x) (2)

PXψ(x) = P (Xψ(x)) = −ih̄∂(xψ(x))
∂x

= −ih̄
(
ψ(x) + x

∂ψ(x)

∂x

)
(3)

One more step forward, we get:

(XP − PX)ψ(x) = ih̄ψ(x) (4)

In other words, XP − PX = ih̄. This is Heisenberg’s matrix method. Indeed
the condition XP − PX = ih̄ is equal to the condition that the position operator
X corresponds to multiplying the wave function by x and the momentum operator P

corresponds to −ih̄ ∂
∂x

.

Now, let’s derive Schrödinger’s equation. In classical mechanics, mechanical energy
is

E =
1

2
mv2 + V (x) =

(mv)2

2m
+ V (x) =

p2

2m
+ V (x) (5)

Putting this into the language of operators, p2 means applying P twice to the vector

ψ(x) , while V (x) means multiplying ψ(x) by V (x). In other words, p2 is −h̄2 ∂
2

∂x2
If
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we divide this by 2m and add V (x) we obtain the energy matrix. If we then apply the
energy matrix to the vector ψ(x), we get:

− h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) (6)

We can get the eigenvalues and the eigenvectors of this energy matrix by solving the
equation

− h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (7)

where E is the eigenvalue.
At this point, we would like to introduce commutator. A commutator of A and B

is defined by AB −BA and denoted as [A,B], For example, our earlier formula can be
re-written as follows:

[X,P ] = ih̄ (8)

Problem 1. Prove the followings.

[A,B] = −[B,A], [A,A] = 0 (9)

[A,B + C] = [A,B] + [A,C], [A+B,C] = [A,C] + [B,C] (10)

[A+B,C +D] = [A,C] + [B,C] + [A,D] + [B,D] (11)

[cA, dB] = cd[A,B], where c and d are numbers (12)

Problem 2. Use (11) and (12) to prove the following.

[A+Bi,A−Bi] = i[B,A]− i[A,B] = 2i[B,A] (13)

Problem 3. Prove the followings.

[AB,C] = A[B,C] + [A,C]B (14)

[D,EF ] = [D,E]F + E[D,F ] (15)

Problem 4. Using (14) and (15), prove the followings:

[X2, Px] = 2ih̄X (16)

[X,P 2
x ] = 2ih̄Px (17)

Problem 5. Using Leibniz rule and Pψ(x) = −ih̄∂ψ(x)
∂x

, prove the following:

[f(X), Px] = ih̄
∂f(x)

∂x
(18)

(Hint1) Notice that we could have obtained (16) using the above formula.

Summary

� A commutator of A and B is defined by AB −BA and denoted as [A,B].

1Show [f(X), Px]ψ = ih̄ ∂f(x)
∂x

ψ
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� [X,P ] = ih̄.

� The position operator X acts by multiplying x.

� The momentum operator Px acts by −ih̄ ∂
∂x

.

� [A,B] = −[B,A], [A,A] = 0

� [AB,C] = A[B,C] + [A,C]B

� [D,EF ] = [D,E]F + E[D,F ]
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