
A short introduction to quantum mechanics IV:

the orthogonality of eigenvectors of Hermitian

matrices

A Hilbert space is a complex vector space where a state vector (or wave
function) lives. In a Hilbert space, matrices called Hermitian matrices play
a role similar to that played by symmetric matrices in a real vector space.
Hermitian matrices are defined by the condition that the complex conjugate
of the Hermitian matrix is equal to the transpose of the Hermitian matrix.
Or in other words, a matrix that is self-adjoint is called a Hermitian matrix
(adjoint is the combination of both transpose and complex conjugation; an
operator or a matrix is called self-adjoint if its adjoint is equal to itself).
One remarkable property of a Hermitian matrix is that its eigenvalues are
always real. Even though we have already learned this from our earlier
article “Eigenvalues and eigenvectors of symmetric matrices and Hermitian
matrices,” we will prove this again using bra-ket notations. Let |n⟩ be an
eigenvector of a Hermitian matrix A with eigenvalue λn. In other words,

A|n⟩ = λn|n⟩ (1)

Then, we have
(A|n⟩)† = (λn|n⟩)† (2)

which implies
⟨n|A† = ⟨n|λ∗n (3)

As A† = A, we have
⟨n|A = ⟨n|λ∗n = λ∗n⟨n| (4)

Then, we get:

⟨n|A|n⟩ = (⟨n|A)|n⟩ = (λ∗n⟨n|)|n⟩ = λ∗n⟨n|n⟩ (5)

Similarly, we get

⟨n|A|n⟩ = ⟨n|(A|n⟩) = ⟨n|(λn|n⟩) = λn⟨n|n⟩ (6)

Therefore we get
λ∗n⟨n|n⟩ = λn⟨n|n⟩ (7)
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This implies that λ∗n = λn, which means that λn is a real number. Therefore
we come to the conclusion that the eigenvalues of a Hermitian matrix are
always real. This property of Hermitian matrices is very important. In an
earlier article, I mentioned that there is a matrix corresponding to any given
observable, and the values for a measurement can only be eigenvalues of this
matrix. As the values for the measurement must be real, the eigenvalues
must also be real. (It doesn’t make any sense that the length of this pencil
is “13 + 3i” centimeters.) Therefore, we can easily see that the matrices
corresponding to observables must be Hermitian matrices.

Now, let’s prove that all the eigenvectors of a Hermitian matrix are
orthogonal to one another. Again, we have proven this before, but we will
do this again using bra-ket notation. Let |n⟩ and |m⟩ be eigenvectors of a
Hermitain matrix A with eigenvalues λn and λm. Then, consider ⟨n|A|m⟩.
We get:

⟨n|A|m⟩ = ⟨n|A†|m⟩ = (⟨n|A†)|m⟩ = (λ∗n⟨n|)|m⟩ (8)

= λ∗n⟨n|m⟩ = λn⟨n|m⟩ (9)

where we have used the fact λn is real, as it is an eigenvalue of a Hermitian
matrix (λ∗n = λn). Similarly we get

⟨n|A|m⟩ = λm⟨n|m⟩ (10)

Equating these results, we get

λn⟨n|m⟩ = λm⟨n|m⟩ (11)

implying that ⟨n|m⟩ = 0 if λn is not equal to λm. Therefore we have proven
that all the eigenvectors of a Hermitian matrix are orthogonal to one another
as long as their corresponding eigenvalues are distinct.

This has far-reaching consequences. It implies that we can form an
orthogonal basis consisting of eigenvectors of the Hermitian matrices cor-
responding to observables. (It is known that as long as the eigenvalues
are discrete, as opposed to continuous, we can even take the basis to be
orthonormal. We will discuss the continuous case later in another article.)

For example letting Ei’s be eigenvalues of an Energy matrix, we have an
orthonormal basis of |Ei⟩s, that is:

⟨Ei|Ej⟩ = 0 if Ei ̸= Ej

⟨Ei|Ej⟩ = 1 if Ei = Ej (12)

(If originally ⟨Ei|Ei⟩ = A for some non-zero A, then we can ‘normalize’ by
defining a new eigenvector with the same eigenvalue Ei:

|Ei(new)⟩ =
|Ei⟩√
A

(13)
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It certainly still has the eigenvalue Ei since

E|Ei(new)⟩ = E

(
|Ei⟩√
A

)
= Ei

|Ei⟩√
A

= Ei|Ei(new)⟩ (14)

Also, its norm is 1, since

⟨Ei(new)|Ei(new)⟩ =
⟨Ei|Ei⟩
(
√
A)2

= 1. (15)

This is what is meant by ‘normalization.’
We can use this orthonormal basis to express an arbitrary vector |ψ⟩ as:

|ψ⟩ =
∑
i

ψ(Ei)|Ei⟩ (16)

This relation can be expressed slightly differently. Recall my article
“Dirac’s bra-ket notation.” The completeness relation takes now in the
following form:

1 =
∑
i

|Ei⟩⟨Ei| (17)

Multiplying by |ψ⟩ on both-hand side, we conclude:

|ψ⟩ =
∑
i

|Ei⟩⟨Ei|ψ⟩ =
∑
i

⟨Ei|ψ⟩|Ei⟩ (18)

where we used the fact that ⟨Ei|ψ⟩ is a just number, so that we just moved
it in front of a ket vector. A ket vector multiplied by a number is equal to a
number multiplied by a ket vector. So, we have ψ(Ei) = ⟨Ei|ψ⟩. Of course,
we saw all this in our earlier article “Dirac’s bra-ket notation.”

Problem 1. As matrices corresponding to observables must be Hermi-
tian matrices, it is known that the position matrices and the momentum
matrices are Hermitian. Given this, check whether the following operators
are Hermitian.

XPx, XY, XPy, PxPy (19)

Summary

� If we have a Hermitian matrix, we can set its eigenvectors to be or-
thonormal (i.e., orthogonal to each other, and each having the norm
1).
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