A short introduction to quantum mechanics IV addendum: revisiting the normalization

Let's consider a state vector given by $|\psi\rangle$. Then, what is the probability that we obtain certain values for observable A when we measure it? If \hat{A} is the linear operator that corresponds to A, we need to find the eigenvalues and the eigenvectors of \hat{A}. Let's say that the eigenvalue is λ_{n} and its corresponding normalized eigenvector $\left|\lambda_{n}\right\rangle$. In other words,

$$
\begin{equation*}
\left\langle\lambda_{n} \mid \lambda_{m}\right\rangle=\delta_{n m} \tag{1}
\end{equation*}
$$

Then, we can express a state vector as a linear combination of these eigenvectors as follows.

$$
\begin{equation*}
|\psi\rangle=\sum_{n} c_{n}\left|\lambda_{n}\right\rangle \tag{2}
\end{equation*}
$$

As we explained earlier it is convenient if $|\psi\rangle$ is normalized. So, let's assume that it is normalized; even if it wasn't, we can always normalize it. Then,

$$
\begin{gather*}
1=\langle\psi \mid \psi\rangle=\left(\sum_{m} c_{m}^{*}\left\langle\lambda_{m}\right|\right)\left(\sum_{n} c_{n}\left|\lambda_{n}\right\rangle\right) \tag{3}\\
1=\sum_{m} \sum_{n} c_{m}^{*} c_{n}\left\langle\lambda_{m} \mid \lambda_{n}\right\rangle \tag{4}\\
1=\sum_{m} \sum_{n} c_{m}^{*} c_{n} \delta_{m n} \tag{5}\\
1=\sum_{m} c_{m}^{*} c_{m}=\sum_{m}\left|c_{m}\right|^{2} \tag{6}
\end{gather*}
$$

I explained earlier that $\left|c_{m}\right|^{2}$ is the probability that we will obtain λ_{m} for the observable A. In other words, (6) means that the total probability is 1 .

Then, how can we obtain c_{m} ? Recall our earlier article on Dirac's bra-ket notation. If we have

$$
\begin{equation*}
|v\rangle=\sum_{i} v_{i}\left|e_{i}\right\rangle, \quad\left\langle e_{j} \mid e_{i}\right\rangle=\delta_{j i} \tag{7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\langle e_{j} \mid \vec{v}\right\rangle=\sum_{i} v_{i}\left\langle e_{j} \mid e_{i}\right\rangle=\sum_{i} v_{i} \delta_{j i}=v_{j} \tag{8}
\end{equation*}
$$

For example, if we have $\vec{v}=2 \hat{x}+3 \hat{y}-4 \hat{z}$, the z component of \vec{v} is given by $\hat{z} \cdot \vec{v}$, which is -4 .

Problem 1. Show the following from (1) and (2).

$$
\begin{equation*}
c_{n}=\left\langle\lambda_{n} \mid \psi\right\rangle \tag{9}
\end{equation*}
$$

If we plug this c_{n} into (2), we obtain

$$
\begin{equation*}
|\psi\rangle=\sum_{n}\left\langle\lambda_{n} \mid \psi\right\rangle\left|\lambda_{n}\right\rangle=\sum_{n}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right| \psi \tag{10}
\end{equation*}
$$

In other words, we obtain the following completeness relation.

$$
\begin{equation*}
I=\sum_{n}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right| \tag{11}
\end{equation*}
$$

Now, let's go over to infinite-dimensional case.

$$
\begin{equation*}
I=\int_{-\infty}^{\infty}|x\rangle\langle x| d x \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
|\psi\rangle=\int_{-\infty}^{\infty} \psi(x)|x\rangle d x \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle x \mid \psi\rangle=\psi(x) \tag{14}
\end{equation*}
$$

In other words, the above formula is just infinite-dimensional versions of (8) and (9).
How about the probabilities in this case? Considering that in the case of finitedimensional case, the probability that we get λ_{n} is given by $\left|c_{n}\right|^{2}=c_{n}^{*} c_{n}$ and $\psi(x)$ corresponds to c_{n} in infinite-dimensional case, the probability that a particle will be found at the position $a<x<b$ 에 is given by

$$
\begin{equation*}
P(a<x<b)=\int_{a}^{b}|\psi(x)|^{2} d x=\int_{a}^{b} \psi^{*}(x) \psi(x) d x \tag{15}
\end{equation*}
$$

Notice here that the probability is being represented by "summing" over all the squares of "coefficients" between x_{a} and x_{b}. In other words, the probability of finding the particle between x and $x+d x$ is given by $\phi^{*}(x) \phi(x) d x$.

Notice that the probability of finding a particle at the position between negative infinity and positive infinity is given by 1 implies

$$
\begin{equation*}
1=\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x \tag{16}
\end{equation*}
$$

In other words, the probability of finding a particle at anywhere is 1 . As before, it is easy to see that this is the same condition that $|\psi\rangle$ is normalized as follows:

$$
\begin{equation*}
1=\langle\psi \mid \psi\rangle=\langle\psi| 1|\psi\rangle=\int_{-\infty}^{\infty} d x\langle\psi \mid x\rangle\langle x \mid \psi\rangle \tag{17}
\end{equation*}
$$

Notice that (14) implies $\psi^{*}(x)=\langle\psi \mid x\rangle$. Thus, the above formula is equal to (16). This interpretation of the normalization of the state vector (that the probability sums up to 1) will play an important role when I discuss the unitarity of the time evolution operator in a later article.

Summary

- If a normalized state vector is given by

$$
|\psi\rangle=\sum_{n} c_{n}\left|\lambda_{n}\right\rangle
$$

where $\mid \lambda_{n} \mathrm{~S}$ are normalized eigenvectors with eigenvalues of λ_{n} for Hermitian matrix \hat{A} that corresponds to the observable A. The probability that we will get λ_{n} when we measure A is given by $\left|c_{n}\right|^{2}$.

- c_{n} can be obtained by the following formula:

$$
c_{n}=\left\langle\lambda_{n} \mid \psi\right\rangle
$$

- The probability that a particle will be found at the position $a<x<b$ is given by

$$
P(a<x<b)=\int_{a}^{b}|\psi(x)|^{2} d x=\int_{a}^{b} \psi^{*}(x) \psi(x) d x
$$

