A short introduction to quantum mechanics IV addendum:
revisiting the normalization

Let’s consider a state vector given by [¢). Then, what is the probability that we
obtain certain values for observable A when we measure it? If A is the linear operator
that corresponds to A, we need to find the eigenvalues and the eigenvectors of A. Let’s
say that the eigenvalue is A,, and its corresponding normalized eigenvector |Ay,). In other
words,

Then, we can express a state vector as a linear combination of these eigenvectors as

follows.
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As we explained earlier it is convenient if |¢)) is normalized. So, let’s assume that it is
normalized; even if it wasn’t, we can always normalize it. Then,
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I explained earlier that |c,,|? is the probability that we will obtain A, for the observable
A. In other words, (6) means that the total probability is 1.
Then, how can we obtain ¢,,? Recall our earlier article on Dirac’s bra-ket notation.
If we have
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For example, if we have ¥ = 22 + 3y — 42, the z component of ¥ is given by 2 - ¥, which
is —4.
Problem 1. Show the following from (1) and (2).
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we have



If we plug this ¢, into (2), we obtain
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In other words, we obtain the following completeness relation.
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Now, let’s go over to infinite-dimensional case.
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where
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In other words, the above formula is just infinite-dimensional versions of (8) and (9).

How about the probabilities in this case? Considering that in the case of finite-
dimensional case, the probability that we get A, is given by |c,|? = cie, and ¥ (x)
corresponds to ¢, in infinite-dimensional case, the probability that a particle will be
found at the position a < x < bo]| is given by
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Notice here that the probability is being represented by “summing” over all the squares
of “coefficients” between x, and xp. In other words, the probability of finding the particle
between x and = + dx is given by ¢*(x)¢(z)dz.

Notice that the probability of finding a particle at the position between negative
infinity and positive infinity is given by 1 implies
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In other words, the probability of finding a particle at anywhere is 1. As before, it is
easy to see that this is the same condition that [¢) is normalized as follows:
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Notice that (14) implies ¥*(z) = (¢»|z). Thus, the above formula is equal to (16). This
interpretation of the normalization of the state vector (that the probability sums up to
1) will play an important role when I discuss the unitarity of the time evolution operator
in a later article.

Summary



e If a normalized state vector is given by
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where | \,s are normalized eigenvectors with eigenvalues of \,, for Hermitian matrix
A that corresponds to the observable A. The probability that we will get A,, when
we measure A is given by |c,|2.

e ¢, can be obtained by the following formula:
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e The probability that a particle will be found at the position a < x < b is given by
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