
A short introduction to quantum mechanics IV addendum:

revisiting the normalization

Let’s consider a state vector given by |ψ⟩. Then, what is the probability that we
obtain certain values for observable A when we measure it? If Â is the linear operator
that corresponds to A, we need to find the eigenvalues and the eigenvectors of Â. Let’s
say that the eigenvalue is λn and its corresponding normalized eigenvector |λn⟩. In other
words,

⟨λn|λm⟩ = δnm (1)

Then, we can express a state vector as a linear combination of these eigenvectors as
follows.

|ψ⟩ =
∑
n

cn|λn⟩ (2)

As we explained earlier it is convenient if |ψ⟩ is normalized. So, let’s assume that it is
normalized; even if it wasn’t, we can always normalize it. Then,

1 = ⟨ψ|ψ⟩ =

(∑
m

c∗m⟨λm|

)(∑
n

cn|λn⟩

)
(3)

1 =
∑
m

∑
n

c∗mcn⟨λm|λn⟩ ‘ (4)

1 =
∑
m

∑
n

c∗mcnδmn (5)

1 =
∑
m

c∗mcm =
∑
m

|cm|2 (6)

I explained earlier that |cm|2 is the probability that we will obtain λm for the observable
A. In other words, (6) means that the total probability is 1.

Then, how can we obtain cm? Recall our earlier article on Dirac’s bra-ket notation.
If we have

|v⟩ =
∑
i

vi|ei⟩, ⟨ej |ei⟩ = δji (7)

we have
⟨ej |v⃗⟩ =

∑
i

vi⟨ej |ei⟩ =
∑
i

viδji = vj (8)

For example, if we have v⃗ = 2x̂+ 3ŷ − 4ẑ, the z component of v⃗ is given by ẑ · v⃗, which
is −4.

Problem 1. Show the following from (1) and (2).

cn = ⟨λn|ψ⟩ (9)
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If we plug this cn into (2), we obtain

|ψ⟩ =
∑
n

⟨λn|ψ⟩|λn⟩ =
∑
n

|λn⟩⟨λn|ψ (10)

In other words, we obtain the following completeness relation.

I =
∑
n

|λn⟩⟨λn| (11)

Now, let’s go over to infinite-dimensional case.

I =

∫ ∞

−∞
|x⟩⟨x|dx (12)

Thus,

|ψ⟩ =
∫ ∞

−∞
ψ(x)|x⟩dx (13)

where
⟨x|ψ⟩ = ψ(x) (14)

In other words, the above formula is just infinite-dimensional versions of (8) and (9).
How about the probabilities in this case? Considering that in the case of finite-

dimensional case, the probability that we get λn is given by |cn|2 = c∗ncn and ψ(x)
corresponds to cn in infinite-dimensional case, the probability that a particle will be
found at the position a < x < b에 is given by

P (a < x < b) =

∫ b

a
|ψ(x)|2 dx =

∫ b

a
ψ∗(x)ψ(x)dx (15)

Notice here that the probability is being represented by “summing” over all the squares
of “coefficients” between xa and xb. In other words, the probability of finding the particle
between x and x+ dx is given by ϕ∗(x)ϕ(x)dx.

Notice that the probability of finding a particle at the position between negative
infinity and positive infinity is given by 1 implies

1 =

∫ ∞

−∞
ψ∗(x)ψ(x)dx (16)

In other words, the probability of finding a particle at anywhere is 1. As before, it is
easy to see that this is the same condition that |ψ⟩ is normalized as follows:

1 = ⟨ψ|ψ⟩ = ⟨ψ|1|ψ⟩ =
∫ ∞

−∞
dx⟨ψ|x⟩⟨x|ψ⟩ (17)

Notice that (14) implies ψ∗(x) = ⟨ψ|x⟩. Thus, the above formula is equal to (16). This
interpretation of the normalization of the state vector (that the probability sums up to
1) will play an important role when I discuss the unitarity of the time evolution operator
in a later article.

Summary
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� If a normalized state vector is given by

|ψ⟩ =
∑
n

cn|λn⟩

where |λns are normalized eigenvectors with eigenvalues of λn for Hermitian matrix
Â that corresponds to the observable A. The probability that we will get λn when
we measure A is given by |cn|2.

� cn can be obtained by the following formula:

cn = ⟨λn|ψ⟩

� The probability that a particle will be found at the position a < x < b is given by

P (a < x < b) =

∫ b

a
|ψ(x)|2 dx =

∫ b

a
ψ∗(x)ψ(x)dx
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