
A short introduction to quantum mechanics V:

the expectation value of given observable

In this article, we discuss how one can calculate the expectation of given
observables supposing that the state vector is known. In our earlier article
“Expectation value and standard deviation,” I explained how we can calcu-
late the expectation value of something if we know the probability of that
thing happens, but let me explain with an example to remind you. The
expectation value of an ordinary six sided die can be calculated as follows.

⟨Die⟩ = 1× 1

6
+ 2× 1

6
+ 3× 1

6
+ 4× 1

6
+ 5× 1

6
+ 6× 1

6
(1)

Thus the expectation value can be calculated by summing over the possible
values multiplied by their probabilities. Now let’s carry this over to quantum
mechanics.

Suppose that the state vector is given as follows

|ψ⟩ = 0.6|2J⟩+ 0.8|5J⟩ (2)

where as before |xJ⟩ is the normalized eigenvector of the energy matrix with
eigenvalue xJ. (i.e. ⟨xJ|xJ⟩ = 1) Notice that the state vector |ψ⟩ is also
normalized, as:

⟨ψ|ψ⟩ = 0.62 + 0.82 = 1 (3)

In physics, we usually assume that a state vector is normalized, because
as long as the norm is not infinity we can always normalize it, and because
it is convenient and practical to work with normalized vectors.

Given this, from our first article on quantum mechanics, we see that
upon observation there is a 0.36 probability that the object’s energy is 2J
and 0.64 probability that it is 5J. So, the expectation value is

⟨E⟩ = 0.62 × 2J + 0.82 × 5J = 3.92 (4)

However, notice that the same can be calculated as follows:

⟨E⟩ = ⟨ψ|E|ψ⟩ = (0.6⟨2J|+ 0.8⟨5J|)(2× 0.6|2J⟩+ 5× 0.8|5J⟩) (5)

Therefore, we conclude that the expectation value of E is given by
⟨ψ|E|ψ⟩, and similarly for other observables. Notice that while the cal-
culation in (5) is done in the eigenvector basis of E, the expression ⟨ψ|E|ψ⟩
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is “basis free,” so the same answer would be obtained by calculating in any
other basis.

Actually, we can show this more rigorously. As before, let

|ψ⟩ =
∑
n

cn|λn⟩ (6)

where
A|λn⟩ = λn|λn⟩, ⟨λn|λm⟩ = δnm (7)

Then the probability that we will get value λn for A is given by cnc
∗
n. There-

fore, the expectation value of A is given by

⟨A⟩ =
∑
n

λnc
∗
ncn (8)

Now, let’s calculate ⟨ψ|A|ψ⟩ and see if it agrees with the above result.
We have

⟨ψ|A|ψ⟩ =
∑
m

⟨λm|c∗mA
∑
n

cn|λn⟩ (9)

=
∑
m

⟨λm|c∗m
∑
n

λncn|λn⟩ (10)

=
∑
m

∑
n

c∗mcnλn⟨λm|λn⟩ (11)

=
∑
m

∑
n

c∗mδmncnλn (12)

=
∑
n

c∗ncnλn (13)

This completes the proof. Notice also that the expectation value is always
real as long as A is Hermitian; both c∗ncn and λn are real. It is also easy to
see from a slightly different way as follows:

(⟨ψ|A|ψ⟩)† = ⟨ψ|A†|ψ⟩ (14)

(⟨ψ|A|ψ⟩)∗ = ⟨ψ|A|ψ⟩ (15)

where we used g† = g∗ for a number g and A† = A.
Problem 1. Suppose a system whose Hilbert space is two-dimensional

and its orthogonal basis vectors are given by |A⟩ and |B⟩. Now, let’s say
that a Hermitian operator H acts on these basis vectors as follows:

H|A⟩ = 4|A⟩ − 3i|B⟩
H|B⟩ = 3i|A⟩+ 2|B⟩ (16)

Using the following notation,

|A⟩ =
(

1
0

)
, |B⟩ =

(
0
1

)
(17)
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express H by a 2×2 matrix, and obtain its expectation value for the case in
which the state vector is given by |A⟩.

Summary

� The expectation value of the observable A for the state vector |v⟩ is
given by ⟨A⟩ = ⟨v|A|v⟩.
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