
A short introduction to quantum mechanics IX:

Harmonic oscillators

So far, we haven’t dealt with any non-trivial examples in quantum me-
chanics. All our earlier discussions rested on somewhat abstract formal-
ism. Therefore, in this article, we present a non-trivial example of quantum
dynamics, albeit the simplest one. Harmonic oscillator. Other interest-
ing example would be hydrogen atom, whose solution showed the triumph
of quantum mechanics, as it agreed with experiments. We postpone our
demonstration of solving Schrödinger equation for hydrogen atom to an-
other article.

Let’s begin. What is the Hamiltonian of harmonic oscillators? It has
kinetic energy and potential energy given as follows:

H =
p2

2m
+

1

2
mω2x2 (1)

where ω =
√

k
m .

Given this, if you recall Planck relation E = h̄ω, you will know that
H and hω have the same dimension, namely, energy. Thus, we might as
well write H = blahhω where blah is dimensionless. Thus, (1) can be re-
expressed as

H = h̄ω

(
mω

2h̄
x2 +

p2

2mh̄ω

)
(2)

where the terms in the parenthesis are dimensionless.
So, how can we factor out the terms in the parenthesis? Note that the

terms in the parenthesis are in the form A2 + B2. If you know some high
school mathematics, you know

A2 +B2 = (A+Bi)(A−Bi) (3)

as long as AB = BA. In our case,

A =

√
mω

2h̄
x, B =

p√
2mh̄ω

(4)

However, we do not have AB = BA. Then, we can modify (3) to write

A2 +B2 =
1

2
(A+Bi)(A−Bi) +

1

2
(A−Bi)(A+Bi) (5)
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which is satisfied, even when AB ̸= BA. So, let’s write a = A+ Bi. Then,
a† = A−Bi as A and B are Hermitian. In other words, we have

a =
mω

2h̄
x+

p√
2mh̄ω

i (6)

and by taking its Hermitian conjugate, we have:

a† =
mω

2h̄
x− p√

2mh̄ω
i (7)

Thus, we can write (1) as

H =
1

2
(aa† + a†a)h̄ω (8)

Furthermore, using [x, p] = xp−px = ih̄, it is easy to show the following
(Problem 1. Hint1):

[a, a†] = 1 (9)

Using all these relations, we can re-express the Hamiltonian (8) as follows:

H = (a†a+
1

2
)h̄ω = (N +

1

2
)h̄ω (10)

where we have used the notation N ≡ a†a which will turn out to be conve-
nient for our purpose.

Given this, let’s calculate the following expression:

[N, a] = [a†a, a] = a†aa− aa†a

= (a†a− aa†)a = (−1)a = −a (11)

We conclude:
[N, a] = −a (12)

Similarly, one can show:
[N, a†] = a† (13)

Now, let |n⟩ be the eigenvector of the operator N with eigenvalue n. In
other words:

N |n⟩ = n|n⟩ (14)

Given this, notice the following:

Na†|n⟩ = (a†N + [N, a†])|n⟩
= (a†N + a†)|n⟩ = na†|n⟩+ a†|n⟩
= (n+ 1)a†|n⟩ (15)

1Use the result of Problem 3 in “A short introduction to quantum mechanics III: the
equivalence between Heisenberg’s matrix method and Schrödinger’s differential equation.”
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Therefore a†|n⟩ is an eigenvector of N with eigenvalue (n+1). From this
reason, we call a† a “raising operator;” it raises the eigenvalue. Similarly,
one can show:

Na|n⟩ = (n− 1)a|n⟩ (16)

Therefore a|n⟩ is an eigenvector of N with eigenvalue (n − 1). From this
reason, we call a a “lowering operator;” it lowers the eigenvalue.

Also, from (10), we see that |n⟩ is an eigenvector of the Hamiltonian
with eigenvalue

(
n+ 1

2

)
h̄ω. Therefore, ap|n⟩ will have

(
n− p+ 1

2

)
h̄ω as its

eigenvalue. At first glance, if we choose p = n+ 1 or larger, ap|n⟩ can have
a negative eigenvalue. In other words, we have

H (ap|n⟩) =
(
n− p+

1

2

)
(ap|n⟩) (17)

where (n− p+ 1/2) is negative.
But, it can’t be, as our Hamiltonian (1) cannot be negative since p2 and

x2 are always non-negative. If you don’t understand what I mean, let me
explain it to you. Suppose |ψ⟩ is an arbitrary wave function. Then, we have

⟨ψ|H|ψ⟩ = 1

2m
⟨ψ|p2|ψ⟩+ mω2

2
⟨ψ|x2|ψ⟩ (18)

The first term on the right-hand side is always non-negative, as

⟨ψ|p2|ψ⟩ =
∫
dx⟨ψ|p|x⟩⟨x|p|ψ⟩

∫
dx(⟨x|p|ψ⟩)∗(⟨x|p|ψ⟩) (19)

is always non-negative. Similarly, the second term on the right-hand side is
also always non-negative, as

⟨ψ|x2|ψ⟩ =
∫
dx⟨ψ|x|x⟩⟨x|x|ψ⟩ =

∫
dx(⟨x|x|ψ⟩)∗(⟨x|x|ψ⟩) (20)

is always non-negative. Thus, ⟨ψ|H|ψ⟩ ≥ 0.
Let’s plug in an eigenvector of H with eigenvalue E to |ψ⟩. Then,

⟨ψ|H|ψ⟩ = ⟨ψ|E|ψ⟩ = E⟨ψ|ψ⟩ ≥ 0 (21)

Therefore, the eigenvalue E cannot be negative.
Therefore, we cannot arbitrarily lower the energy eigenvalue by applying

the lowering operator repeatedly to |n⟩. Where have we gone wrong? Where
is the loophole in our argument? (17) is still correct, even when (n−p+1/2)
is negative. The only way this formula is satisfied without ap|n⟩ being a
proper eigenvector is

ap|n⟩ = 0 (22)

Then, both the left-hand side and the right-hand side of (17) are zero.
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In other words, we see that we reached a zero-vector at a certain point
when we applied a repetitively to |n⟩. In other words, there exists l ≤ p− 1,
such that al|n⟩ is not a zero vector, but

al+1|n⟩ = 0 (23)

Now, let’s define
|ψl⟩ ≡ al|n⟩ (24)

Then, from (23), it satisfies a|ψl⟩ = 0.
Now, it is easy to see:

N |ψl⟩ = a†a|ψl⟩ = a† · 0 = 0 = 0|ψl⟩ (25)

Therefore, |ψl⟩ is an eigenvector ofN with eigenvalue 0. It implies |ψl⟩ = c|0⟩
up to some normalization factor c, if we use the notation of (14), and want
to normalize |0⟩ by ⟨0|0⟩ = 1. Now notice that not only H, but also N
cannot have a negative eigenvalue, because

⟨n|N |n⟩ = (⟨n|a†)(a|n⟩) = (a|n⟩)∗(a|n⟩) ≥ 0 (26)

Thus, we see that |0⟩ has the lowest eigenvalue for N , which is zero. There-
fore, it also has the lowest eigenvalue for the energy operator which is given
by (N + 1/2)h̄ω. Thus, it is the ground state, i.e., the lowest energy state.
Furthermore, one can easily check that the ground state satisfies the condi-
tion that its energy must be non-negative as (0 + 1/2)h̄ω is non-negative.
As all the other states have higher energy, we can easily conclude that all
the states have non-negative energy as expected.

We can actually obtain the explicit wave-function ψ0(x) of |0⟩ as follows.
(6) and a|0⟩ = 0 implies: (

x+
h̄

mω

d

dx

)
ψ0(x) = 0 (27)

The solution is given by:

ψ0(x) = Ce−
mω
2h̄

x2
(28)

for a certain C that can be determined by normalizing the wave function.
We can obtain the eigenvectors of higher eigenvalues by repeatedly applying
the raising operator. For example, the wave-function ψ1(x) of |1⟩ can be
obtained as follows:

ψ1(x) =

(
x− h̄

mω

d

dx

)
ψ0(x) (29)

with a certain suitable overall factor, if ψ1(x) is normalized. From such a
normalized ψn(x), we can actually calculate the probability that the object
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Figure 1: |ψ20(x)|2

will be found at the position between x and x+ dx. It is naturally given by
|ψn(x)|2dx.

Actually, in the limit of very high n, the probability approaches the
classical one. Think about an object oscillating due to a spring. It stays
long when the object is near the turning point, as it momentarily stops
and it doesn’t stay long at the midpoint since this is when it moves fastest.
Therefore, the probability for the particle to be found at the turning point
is high and the probability for the particle to be found at the midpoint is
low. On the other hand, the probability that the particle would be found
outside the oscillating range (i.e. region farther than the turning point) is
zero. In the large n limit, the probability shows such a behavior. See Fig.1.
I plotted the probability for the particle with n = 20 to be found at given
position (i.e. x). It is very wiggly, and actually, there are 21 wiggles. The
number of wiggle is always n+1. Therefore, if n is bigger there will be more
wiggles and the width of wiggle will be smaller, meaning that one can see
as if the wiggles are smoothed out (i.e. averaged) in the classical limit in
which n is very big. In that way, the probability for the classical case would
be given by roughly half of the peaks. Also, as I mentioned, you clearly see
that the probability is highest near the turning point (the two highest peaks
at the ends) and that the probability is almost zero for x farther than the
turning points.

Problem 2. If |n⟩s are normalized (i.e. the norm is 1) show that the
following |n+ 1⟩ and |n− 1⟩ are also properly normalized.

|n+ 1⟩ = a†√
n+ 1

|n⟩, |n− 1⟩ = a√
n
|n⟩ (30)

Problem 3. Evaluate the followings. (Hint2)

⟨n|x|n⟩, ⟨n|x|n+ 1⟩ (31)

2Express x in terms of a and a† using (6) and (7), and use the result of Problem 2.
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Problem 4. How does the expectation value of the position x for a
quantum state initially given by |3⟩+|4⟩√

2
evolve over time? Obtain an explicit

expression.
Problem 5. Classically, the energy of a harmonic oscillator is allowed

to be zero, if x = p = 0. However, we have seen that quantum mechanically,
the lowest energy possible is not zero, but 1

2 h̄ω (for |0⟩). Show that the
uncertainty principle would be violated if there existed a state |ψ⟩ of which
the energy for harmonic oscillator is zero. (i.e. ⟨ψ|H|ψ⟩ = 0 where H is
given by (1).) In other words, this result shows that uncertainty principle
forces the ground state energy for harmonic oscillator to be non-zero. This
problem was on an exam during Korean Physics Olympiad camp. (Hint3)

Summary

� H =
p2

2m
+

1

2
mω2x2.

� H =
1

2
(aa† + a†a)h̄ω = (N +

1

2
)h̄ω.

� [a, a†] = 1. a is the lowering operator and a† is the raising operator.
They lower and raise the eigenvalues for the Hamiltonian of harmonic
oscillator.

� |n⟩ is defined by N |n⟩ = n|n⟩. The eigenvalues n are always non-
negative integers. a†|n⟩ has an eigenvalue n+1. a|n⟩ has an eigenvalue
n− 1, unless n = 0. When n = 0, we have a|0⟩ = 0.

3Show ⟨x2⟩ = ⟨p2⟩ = 0. Then, use ∆x2 = ⟨x2⟩ − ⟨x⟩2, ∆p2 = ⟨p⟩2 − ⟨p⟩2. I couldn’t
solve this problem because I didn’t know these relations for standard deviations then.
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