Quotient rule

In this article, we will investigate how the derivatives of the following form of functions can be obtained:

$$
\begin{equation*}
\frac{f(x)}{g(x)} \tag{1}
\end{equation*}
$$

To this end, let $h=f / g$ and try to find the derivatives of h in terms of f, g, f^{\prime} and g^{\prime}. As $f=g h$, we have:

$$
\begin{equation*}
f^{\prime}=g^{\prime} h+g h^{\prime} \tag{2}
\end{equation*}
$$

which imply

$$
\begin{equation*}
\left(\frac{f}{g}\right)^{\prime}=h^{\prime}=\frac{f^{\prime}-g^{\prime} h}{g}=\frac{f^{\prime}-g^{\prime}(f / g)}{g}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \tag{3}
\end{equation*}
$$

This is the quotient rule.
Problem 1. Let's derive the quotient rule by an alternative way. To this end, let's first calculate the derivative of $(1 / g(x))$. Using chain rule, we have:

$$
\begin{equation*}
\left(\frac{1}{g(x)}\right)^{\prime}=-\frac{1}{g(x)^{2}} \cdot g^{\prime}(x) \tag{4}
\end{equation*}
$$

Given this, let's calculate the derivative of (1). Let, $j=1 / g$. Then, we have:

$$
\begin{equation*}
\left(\frac{f}{g}\right)^{\prime}=(f j)^{\prime} \tag{5}
\end{equation*}
$$

Now, use Leibniz' rule to prove (3). (Hint ${ }^{1}$)
Problem 2. Show

$$
(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}
$$

Problem 3. Calculate the followings.

$$
\begin{array}{cc}
\left(\frac{x+2}{x^{2}+3}\right)^{\prime}=?, \quad\left(\frac{x^{2}}{2 x^{2}+1}\right)^{\prime}=?, \quad\left(\frac{\sin x}{x^{2}}\right)^{\prime}=? \\
\text { Summary }
\end{array}
$$

- The quotient rule is given by

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

[^0]
[^0]: ${ }^{1}$ Use $j=1 / g$ and j^{\prime} given in (4)

