
Radian

See Fig. 1. How do we calculate “l” which is defined as the length of arc
with the radius r and degree θ? It is easy to see that the length should be
θ/360◦ times the length of the circle with radius r. Therefore, we get the
following:

l = 2πr
θ

360◦
= r

( π

180◦
θ
)

(1)

Figure 1: arc with the radius r and degree θ

Now, it may seem that the extra factor π/180◦ is cumbersome. There-
fore, let’s absorb this factor into the definition of the angle. So, if we define
our new θ as our old θ multiplied by (π/180◦), we may write the above
relation as l = rθ. This is the definition of a radian. In other words, we
have the following relation:

θ(radian) =
π

180◦
θ(degree) (2)

For example, the right angle is 90◦. In radians, it’s π
180◦ 90◦ = π

2 .

Figure 2: r sin θ ≈ rθ

What is the advantage of using radians? After all, nobody uses radians
in daily life. People always use degrees. However, in mathematics radians
are more natural than degrees. Not only do radians have the simple formula
for the length of an arc, they can approximate the value of trigonometric
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functions much more succinctly. See Fig. 2. When θ is very small, you can
easily see that “r sin θ is approximately “rθ.” Therefore, in this case, we
have:

sin θ ≈ θ (3)

This fact has an enormous importance in mathematics. Saying it again, it
justifies the use of radians and makes it “natural.” As a side remark, in our
later article “Taylor series,” we will prove that the sine function in terms of
radian θ is given by the following formula:

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+
θ9

9!
− · · · (4)

where n! is defined by:

n! = n× (n− 1) × (n− 2) × · · · 3 × 2 × 1 (5)

(For example, 7! = 7× 6× 5× 4× 3× 2× 1) The series converges for any θ.
An interesting point is that an angle is “dimensionless” when expressed

in radians. Notice that our earlier relation l = rθ means

θ =
l

r
(6)

The right hand-side is dimensionless, as it is length divided by length. There-
fore, θ is indeed dimensionless. Notice that if θ were not dimensionless, we
would not be able to directly add each term in (4), because θ, θ3, θ5 would
all have different dimensions. For example, if l is length, we cannot add l
and l3, because the former has the dimension of length while the latter has
the dimension of volume. The fomer must have an extra factor that has
dimension of length squared to be added to the latter. Otherwise, the latter
must be divided into a factor that has dimension of length square.

Note that if we want to use degrees instead of radians for the formula
(4), the same formula becomes much more complicated, precisely from the
reason just mentioned. From (2), you can easily see that it is given by:

sin θ =
π

180◦
θ− 1

3!

( π

180◦
θ
)3

+
1

5!

( π

180◦
θ
)5

− 1

7!

( π

180◦
θ
)7

+
1

9!

( π

180◦
θ
)9

−· · ·
(7)

Therefore, we indeed see that radians are more natural than degrees.
Actually, we also have tan θ ≈ θ in radians. This is apparent from the arc
and the right triangle drawn in Fig. 3. Again, the point is that this simple
relation would be complicated if we used degrees.

Finally, I want to advise you that you have to be careful when you
calculate trigonometric functions using a calculator. If you type sin 30 into
calculator and it doesn’t give 0.5, it probably means that your calculator
is set in radian mode rather than degree mode, as sin 30 in radian is not
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Figure 3: r tan θ ≈ rθ

0.5. Similarly, if you type sin(π/6) into calculator and it doesn’t give 0.5,
it probably means that your calculator is set in degree mode rather than
radian mode.

Actually, you can also use google to obtain trigonometric functions. If
you google “sin 30” it will return the sine for 30 radians. If you google “sin
30 degrees” it will return 0.5, the sine for 30 degrees.

Problem 1. Express the area of the sector drawn in Fig. 1 in terms of
r and θ(radian).

Problem 2. What is the period of sinx when x is given in terms of
radians?

Summary

• 180 degrees is π radian.

• The length of the arc l with radius r and radian degree θ is given by

l = rθ
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