
Reflection and transmission of travelling wave

In this article, we will quantitatively describe reflection and transmission of travelling

wave when it hits upon a different medium. Then, you will be asked to check the assertion

stated about reflected pulse in our earlier article “Interference from thin films.”

See Fig.1. in that article. A pulse is coming from the left. After it hits the interface,

a transmitted pulse goes to the right and a reflected pulse goes to the left. Interface is the

point where the two different media meet. We will call the speed of the wave on the medium

situated on the left of the interface by vL and the one on the right by vR. Then Fig.1.(a)

corresponds to the case vL < vR and Fig.1.(b) corresponds to the case vL > vR. We will

calculate the reflection amplitude and the transmission amplitude in a general case without

considering the both cases separately. Then, plugging in the appropriate values for vL and

vR will yield the results for the both cases.

In that article, it was a pulse that we considered. In this article, we will consider sine

waves. This is justified since we know that a pulse is a sum of sine waves from our earlier

articles on Fourier series; after obtaining the reflection wave and the transmission wave in

the case when the incident wave is a sine wave, we can sum up the corresponding sine-like

reflection waves and the sine-like transmission waves to obtain the reflected pulse and the

transmitted pulse.

Anyhow, let’s say that the interface is at x = 0. Let’s also express the incident wave as

follows:

Ac cos(kLx− ωt) +As sin(kLx− ωt) (1)

This makes sense since the incident wave is moving to the right. We also naturally have

kL = ω/vL. The above formula is valid for x ≤ 0, as the incident wave is currently on the

left of the interface.

Now, as the transmitted wave is moving to the right, we can similarly express it as follows:

Fc cos(kRx− ωt) + Fs sin(kRx− ωt) (2)

where kR = ω/vR. The above formula is valid for x ≥ 0 as the transmitted wave is on the

right of the interface.

Now, let’s consider the reflected wave. The reflected wave moves with the same speed with

the incident wave as they are in the same medium but in the opposite direction. Therefore,

we have:

Bc cos(−kLx− ωt) +Bs sin(−kLx− ωt) (3)

This equation is valid for x ≤ 0.
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Summarizing, when x ≤ 0 the wave is given by sum of (1) and (3) and when x ≥ 0 the

wave is given by (2). In other words, if we call the wave function by ψ(x, t), for x ≤ 0, we

have:

ψ(x, t) = Ac cos(kLx−ωt) +As sin(kLx−ωt) +Bc cos(−kLx−ωt) +Bs sin(−kLx−ωt) (4)

and for x ≥ 0, we have:

ψ(x, t) = Fc cos(kRx− ωt) + Fs sin(kRx− ωt) (5)

Now comes the crucial point. The wave function cannot have two values at the same

point. Otherwise, it would mean that the rope is torn. Since (4) and (5) are continuous

functions, the only part we have to be careful about the continuity of the wave function is at

x = 0. Plugging this value to (4) and (5) and equating them, we get:

Ac +Bc = Fc, As +Bs = Fs (6)

Now comes another crucial point. The first derivative of the wave function must be contin-

uous. Otherwise, it would mean that the rope is not smooth, but angled at the discontinuous

point. This implies
∂ψ(x, t)

∂x
must be continuous. Again, we need to consider when x = 0.

Plugging (4) and (5), we obtain:

kLAc − kLBc = kRFc, kLAs − kLBs = kRFs (7)

All we are left to do is solve (6) and (7). The incident wave is given. Therefore, we know

Ac and As. The unknowns are Bc, Bs, Fc and Fs. If you solve them, we get (Problem 1.

Check this!)
Bc

Ac
=
Bs

As
=
kL − kR
kL + kR

(8)

Fc

Ac
=
Fs

As
=

2kL
kL + kR

(9)

In other words, (8) is the ratio of the amplitude of the reflected wave to the one of the

incident wave, and (9) is the ratio of the amplitude of the transmitted wave to the one of the

incident wave. Notice also that the quantity in (8) is always between −1 and 1. This makes

sense since a reflected wave can never be bigger than the incident wave.

Let me conclude this article with some remarks. Even though we consider the wave on a

rope in this article, everything in this article can be carried into any other cases as long as

they deal with the reflection and the transmission of 1-dimensional waves. For example, if

you send a beam of light from the air to the water in a direction perpendicular to the surface

of the water, (8) and (9) hold. Nevertheless, more analysis is needed when the beam of light

is hit upon the surface of water askew.

Problem 1. What happens when a wave is hit upon the same medium? Show that there

is no reflected wave and every wave is transmitted as expected since it can be regarded as

not hitting new medium at all. (Hint1)

1In such a case kL = kR
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Problem 2. Check the assertion made about the reflected pulse in our earlier article

“Interference from thin films.” (Hint2)

Problem 3. Remember that we have alternatively expressed the sine and cosine func-

tions by exponential functions in Problem 5. in our earlier article “Differential equations.”

Similarly, we can revisit all our calculations in this article using exponential functions and

this makes the calculation simpler. For example, (1), (2) and (3) can be re-expressed as:

A exp(i(kLx− ωt)), F exp i(kRx− ωt), B exp(i(−kLx− ωt)) (10)

Using these relations, re-do the calculation done in this article and re-obtain (8) and (9).

Summary

• When a travelling wave enter a different medium (i.e. the one that has a different wave

speed), part or all of the wave is reflected and part of all of the wave is transmitted.

• The reflection amplitude and the transmission amplitude can be obtained from the

condition that the wave function and the first derivative of wave function are continuous.

2Think about the sign of (8)
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