
Kepler’s first and third laws revisited

In this article, by closely following Analytical Mechanics by Fowles and Cassiday, we will

prove Kepler’s first law and third law rigorously. We won’t prove Kepler’s second law as our

earlier treatment of it was already rigorous. To this end, it turns out to be useful to define

the following variable.

u ≡ 1

r
(1)

In this variable, angular momentum divided by mass of the planet, l is given as follows:

l = r2θ̇ =
θ̇

u2
(2)

Given this, by expressing the time derivative in terms of θ derivative, we can obtain r̈ as

follows:

ṙ = − 1

u2
u̇ = − 1

u2

dθ

dt

du

dθ
= −l du

dθ
(3)

r̈ = −l d
dt

du

dθ
= −l dθ

dt

d

dθ

du

dθ
= −lθ̇ d

2u

dθ2
= −l2u2 d

2u

dθ2
(4)

Now, remember that we had following in our earlier article,

Feff = mr̈ =
L2

mr3
− GMm

r2
(5)

Thus,

r̈ =
(L/m)2

r3
− GM

r2
(6)

−l2u2 d
2u

dθ2
= l2u3 −GMu2 (7)

d2u

dθ2
+ u =

GM

l2
(8)

The solution to the above differential equation is given by

u = B cos(θ − θ0) +
GM

l2
(9)

or

r =
1

GM/l2 +B cos(θ − θ0)
(10)

for a certain B, and θ0 determined by initial conditions. However, we can set θ0 = 0 by

rotating the polar coordinate system. This corresponds to choosing the closest approach of

planet to the Sun as θ = 0. This yields:

r =
l2/(GM)

1 + (Bl2/(GM)) cos θ
(11)
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First, notice that the orbit closes itself, as the planet comes to the same position after θ

changes by 2π. (i.e. r(θ) = r(θ+2π). Second, further notice that this is precisely an equation

for conics, if you remember our earlier discussion in “Conic sections in polar coordinate.”

Remember, we had

r =
a(1− e2)

1 + e cos θ
(12)

where e is eccentricity, and a is the semi-major axis of the ellipse in case −1 < e < 1.

Therefore, we algebraically proved Kepler’s first law that the orbits of objects under inverse-

square law force are always conics, which Newton had proved geometrically.

Now let’s prove Kepler’s third law. We know that the area of ellipse is given by πab where

b is semi-minor axis. Also, we know the following relation:

dA

dt
=

1

2
r2θ̇ =

l

2
(13)

which is a constant. Given this, the period (i.e. the time the planet takes to swipe the area

of the ellipse) is given by:

T =
A

dA/dt
=

2πab

l
=

2πa2
√

1− e2

l
(14)

which yields:

T 2 =
4π2a4

l2
a(1− e2)

a
(15)

Now, comparing (11) and (12), we have:

a(1− e2) =
l2

GM
(16)

Now plugging this equation to (15), we get:

T 2 =
4π2

GM
a3 (17)

which is Kepler’s third law.

Summary

• If you express the motion of a planet in terms of u ≡ 1/r, its equation of motion

becomes
d2u

dθ2
+ u = const. Thus, we can easily solve the equation of motion using sine

or cosine function. Expressed this way, we can prove Kepler’s first and third laws.
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