
Rolling down on an inclined plane

In an earlier article, we have calculated the speed of an object sliding on an inclined

plane. In this article, we will calculate the speed of an object rolling down on an inclined

plane without slipping. We will first solve this problem using the conservation of energy.

Then, we will solve this problem for the second time using the concepts of force and torque.

For the first approach, we need to prove a theorem; we need to express the kinetic energy

of particles in a system in terms of the center of mass velocity and the velocities relative to

the center of mass. Let’s denote the mass of each particle by mi and the velocity of each

particle by ~vi. Then, the total mass M is given by

M =
∑
i

mi (1)

and the center of mass velocity is given by

~vcm =

∑
imi~vi
M

(2)

Then, the velocity relative to the center of mass is given by

~v′i = ~vi − ~vcm (3)

The total kinetic energy of the particles can be expressed as

1

2

∑
i

mi~vi · ~vi =
1

2

∑
i

mi(~vcm + ~v′i) · (~vcm + ~v′i)

=
1

2

∑
i

(
mi~v

2
cm + 2mi~v

′
i · ~vcm +mi~v

′2
i

)
=

1

2

(∑
i

mi

)
~v2cm +

(∑
i

mi~v
′
i

)
· ~vcm +

∑
i

1

2
mi~v

′2
i (4)

=
1

2
M~v2cm +

∑
i

1

2
mi~v

′2
i (5)

where from (4) to (5) we used (1) and ∑
i

mi~v
′
i = 0 (6)

In other words, if we notice that ~v′is are the velocities in the center of mass frame, it is natural

that the total momentum in the center of mass frame is zero.

Problem 1. Prove (6) mathematically! (Hint1)
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Figure 1: Rolling down on an inclined plane Figure 2: Force diagram

Problem 2. Show that among all the inertial reference frames, the total kinetic energy

of particles is smallest in the center of mass frame. Now, we are ready to solve the problem.

See Fig. 1. What is the speed of the ball after it rolls down s meter along the inclined plane

with slope θ? We will assume that the center of mass of the ball is at the center of the ball,

and the mass of the ball is M , the moment of inertia I and the radius R.

We know that the total kinetic energy of the ball after rolling down s meter must be

Mgs sin θ from the conservation of energy. On the other hand, from the result of the last

article, we know ∑
i

1

2
mi~v

′2
i =

1

2
Iω2 (7)

Thus, from (5) the total kinetic energy of the ball with speed v and angular velocity ω is

given by
1

2
Mv2 +

∑
i

1

2
mi~v

′2
i =

1

2
Mv2 +

1

2
Iω2 (8)

We also know that the following condition must be satisfied if the ball is not slipping:

v = Rω (9)

Thus, we have

Mgs sin θ =
1

2
Mv2 +

1

2
I
( v
R

)2
(10)

Thus, we conclude

v =

√
2gs sin θ

1 + I
MR2

(11)

Now, the second approach. We will approach this problem by analyzing the forces acting

on the ball. Now, there are three forces acting on the ball: gravity, normal force, and friction.

See Fig. 2. In this case, we have to include the friction, because the ball would never rotate

without it. And, the ball has to rotate because we are assuming that the ball rolls down

without slipping. Given this, as before, we can decompose gravity to the force parallel to the

inclined plane, and to the force normal to the inclined plane. The latter is canceled by the

1Use (2) and (3).
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normal force. Thus, if we denote the friction force by f , the total force acting on the ball is

given by Mg sin θ − f . Therefore, the acceleration of the ball is given by

a =
mg sin θ − f

m
= g sin θ − f

m
(12)

Now, we need to calculate the torque exerted on the ball to calculate the angular acceleration.

However, we need to be careful, because the axis of rotation is moving as well! The angular

momentum is usually defined by L =
∑

i ~ri ×mi~vi, but now we need to consider

L′ =
∑
i

~r′i ×mi~v
′
i (13)

where ~r′i is the relative position with respect to the axis of rotation, and ~v′i = ~̇r′i. In other

words, if we denote the absolute (i.e. usual) position by ~ri, then we have

~ri = ~r′i + ~r0 (14)

where ~r0 is the position of the axis of rotation. Given this, we can write

dL′

dt
= Iα (15)

as I and α are determined from the relative position to the axis of rotation, not from the

absolute position.

OK. From (13), we have

dL′

dt
=

∑
i

~v′i ×mi~v
′
i +
∑
i

r′i ×mi~̇v
′
i (16)

= 0 +
∑
i

~r′i ×mi~̇vi −
∑
i

~r′i ×mi~̇v0 (17)

where from (16) to (17) we used ~vi = ~v′i + ~v0 which can be deduced from (14). The second

term in (17) is equal to
∑

i ~r
′
i × ~Fi(ext) which can be easily deduced by taking the similar

step to the one in our earlier article “Re-visiting angular momentum conservation in central

force.” Thus, (17) becomes

dL′

dt
=
∑
i

~r′i × ~Fi(ext) −

(∑
i

mi~r
′
i

)
~̇v0 (18)

In our case, the axis of rotation coincides with the center of mass. Thus, we have
∑

imi~r
′
i = 0.

Therefore, the last term can be dropped. Thus, we can write

dL′

dt
=
∑
i

~r′i × ~Fi(ext) (19)

We know that the left-hand side is given by Iα. Now, let’s calculate the right-hand side. The

gravity acts on the center of mass, so it does not contribute to the torque. The normal force

is directed toward the axis of rotation, so it does not contribute to the torque. As you can

see clearly from the figure, only the friction contributes to the torque. Thus, we can write

Iα = fR (20)
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If the ball rolls down without sleeping, we must have

α =
a

R
(21)

Thus, plugging (20) and (21) to (12), we get

a =
g sin θ

1 + I
MR2

(22)

Now, it’s a simple exercise to derive (11) from this acceleration.

Final comment. You see that the last term in (18) can be dropped when ~̇v′0 = 0 as well.

In other words, when the axis of rotation is moving at a constant velocity or at rest. We will

consider such cases in the next two articles.

Summary

• The total kinetic energy of particles in a system is given by

1

2
Mv2cm +

∑
i

1

2
miv

2
i

where M is the total mass of the particles, vcm is the speed of center of velocity, and

the second term is the kinetic energy of the particles seen in the center of mass frame.

• Thus, if the center of mass of an object with mass M moves with velocity v, and the

object rotates around the center of mass as its axis with angular velocity ω, with the

moment of inertia being I, the total kinetic energy of the object is given by

1

2
Mmv2 +

1

2
Iω2
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