
Rotation and the Lorentz transformation,

orthogonal and unitary matrices

In our earlier article, “Lorentz transformation and Rotation, a compari-
son,” I explained that proper time and proper distance are invariant under
Lorentz transformation and the length is invariant under rotation. In this
article, we go one step further and present conditions the Lorentz transfor-
mation and Rotation matrix should satisfy.

To this end, let’s express proper time in matrix form. If we let:

~v =


c∆t
∆x
∆y
∆z

 , η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1)

Then, the proper time is given by

(∆τ)2 = vT ηv (2)

Now, if we define Λ, the Lorentz transformation matrix, as follows,

Λ ≡


γ −γ vc 0 0

−γ vc γ 0 0
0 0 1 0
0 0 0 1

 (3)

then we can express the Lorentz transformation in matrix form as follows:

~v′ ≡


c∆t′

∆x′

∆y′

∆z′

 = Λv (4)

Our earlier article comparing Lorentz transformation and rotation found
that:

(v′)T ηv′ = vT ηv (5)

Plugging (4) into to the above equation yields:

ΛT ηΛ = η (6)
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Similarly, if we let the rotation matrix be O and take similar steps to
those we have just taken with Lorentz transformation matrix, we get:

OT IO = I (7)

where I is the identity matrix. This in turn, implies:

OTO = I (8)

A matrix that satisfies the above condition is called an “orthogonal matrix.”
(Problem 1. Prove that the determinant of an orthogonal matrix is always
either 1 or −1.)

We denote an orthogonal matrix of size n×n by O(n). For example, the
matrix (

cos θ − sin θ
sin θ cos θ

)
(9)

from our article “Rotation in Cartesian coordinate” is an example of an O(2)
matrix; it is a 2 × 2 matrix which expresses a rotation in two dimensions.
While all rotation matrices are orthogonal matrices, not all orthogonal ma-
trices correspond to rotation matrices. For example, the following matrix is
not a rotation matrix: (

1 0
0 −1

)
(10)

It sends (x, y) to (x,−y). Therefore, it is a matrix that represents reflection
about the x-axis. Notice also that the determinant of this matrix is −1, not
1 as in (9). It can be shown that all rotation matrices have determinant 1.
Think it in this way: an identity matrix is a rotation matrix with determi-
nant 1; it rotates a vector by zero degree. Now notice that every rotation
matrix rotates a vector by a certain angle. For example let’s say Oθ is a
matrix that rotates a vector by θ degrees about a particular axis. We know
that the determinant of Oθ has to be either 1 or −1 because it is an orthog-
onal matrix and that it must be 1 for θ = 0. As θ gradually increases from
0, the determinant cannot suddenly jump from 1 to −1, as all the numbers
in the rotation matrix change gradually without sudden jumping (we say
that the matrix Oθ is “connected” to the identity matrix). Therefore, we
conclude that the determinant of a rotation matrix is 1.

An orthogonal matrix with determinant 1 is called a “special orthogonal
matrix.” Such an n× n matrix is denoted as SO(n). Similarly, we call the
matrix that satisfies (6) with determinant 1, SO(1, 3). Here (1, 3) denotes
the fact that η has one 1 and three −1s in the diagonal part of η. (i.e. 1
positive eigenvalue and 3 negative eigenvalues) (Problem 2. Prove that the
determinant of the matrix that satisfies (6) is always either 1 or −1. Also,
check that the determinant of (3) is 1.)
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Notice that an orthogonal matrix necessarily preserves the dot product.
For example, if v′1 = Ov1, v

′
2 = Ov2, we have:

v′1 · v′2 = (v′1)
T v′2 = (v1)

TOTOv2 = vT1 v2 = v1 · v2 (11)

Similarly, if we define the dot product of two “4-vectors” ~A, ~B in special
relativity as follows,

~A · ~B = (Att̂+Axx̂+Ayŷ +Az ẑ) · (Btt̂+Bxx̂+Byŷ +Bz ẑ)

= AtBt −AxBx −AyBy −AzBz (12)

and set v′1 = Λv1, v
′
2 = Λv2, we easily see that Lorentz transformation also

preserves the dot product as:

v′1 · v′2 = (v′1)
T ηv′2 = (v1)

TΛT ηΛv2 = v1ηv2 = v1 · v2 (13)

We will have a chance to talk more about 4-vector in another article. As
we have seen in our seventh article on quantum mechanics, unitary matrices
are often more useful than orthogonal matrices in quantum mechanics.

Problem 3. Show that (3) can be re-expressed as

Λ ≡


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 (14)

where tanhφ = v/c (such a φ is called the “rapidity” of the transformation).
Hint1. Written this way, the transformation matrix looks quite similar to
(9). In other words, hyperbolic sine and cosine play a similar role in the
Lorentz transformation to sine and cosine in a rotation. Also, check that
the determinant of (14) is 1.

Problem 4. If you rotate a vector by θ1 around a certain axis and rotate
it again around the same axis by θ2, the result is a rotation by θ1 + θ2. This
can be seen as follows:(

cos θ2 − sin θ2
sin θ2 cos θ2

)(
cos θ1 − sin θ1
sin θ1 cos θ1

)
=

(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
Roughly speaking, you “boost” a vector in a Lorentz transformation

instead of rotating it. Check for yourself that boosting a vector with a
rapidity φ1 along the x-direction and boosting it again with a rapidity φ2

1Try to express coshφ and sinhφ in terms of tanhφ, using cosh2 φ − sinh2 φ = 1 and
tanhφ = sinhφ/ coshφ
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along the x-direction is the same thing as boosting with a rapidity φ1 + φ2
in a single go.

Also, from tanh(φ1 + φ2) = (tanhφ1 + tanhφ2)/(1 + tanhφ1 tanhφ2),
derive the relativistic addition rule for velocities.

Summary

• The determinant of an orthogonal matrix is always 1 or −1.

• An orthogonal matrix of size n× n is denoted by O(n).

• All rotation matrices correspond to “special orthogonal matrix” SO(n).
“Special”(S) means that the determinant is 1.

• Lorentz transformation matrix corresponds to SO(1, 3) where 1 de-
notes that there is one 1 in the diagonal part of η and 3 denotes that
there is three −1s in the diagonal part of η.

• Orthogonal matrices such as rotation matrix or Lorentz transformation
matrix preserve the inner product.

• The off-diagonal terms for the Lorentz transformation matrix corre-
sponding to a boost in one direction has the same signs (i.e. ± sinhφ
and ± sinhφ), while the off-diagonal terms for the rotation matrix has
the opposite signs (i.e. ± sin θ and ∓ sin θ).
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