
A short introduction to quantum mechanics XI:

Schrödinger equation in 3-dimensional space

So far we have considered a 1-dimensional problem. But in reality, a particle can
move in three dimensions, on which we will now focus. In this case, we have the position
operators X, Y , Z, which act by multiplying x, y, z respectively. Also, we now have
three momentum operators: the x,y,z-components of momentum, which we denote by

Px,Py,Pz. Naturally, they act by −ih̄ ∂
∂x

,−ih̄ ∂
∂y

,−ih̄ ∂
∂z

. With this information, it is

easy to check the following:

[X,Px] = [Y, Py] = [Z,Pz] = ih̄ (1)

[X,Y ] = [Y,Z] = [Z,X] = 0 (2)

[Px, Py] = [Py, Pz] = [Pz, Px] = 0 (3)

The last one can be shown from the fact that partial derivatives commute.
Problem 1. Check [Y, Px] = 0 using Leibniz rule and the property of partial

derivatives. (Hint1) Thus, we have

[Y, Px] = [Z,Px] = [X,Py] = [Z,Py] = [X,Pz] = [Y, Pz] = 0 (4)

In 3d, the energy of a particle is given by

E =
p2x + p2y + p2z

2m
+ V (x, y, z) (5)

which implies

− h̄2

2m

(
∂2ψ(x, y, z)

∂x2
+
∂2ψ(x, y, z)

∂y2
+
∂2ψ(x, y, z)

∂z2

)
+ V (x, y, z)ψ(x, y, z) = Eψ(x, y, z)

(6)
This is the Schrödinger equation for 3-dimensional case.

If the potential can be written in the following form

V (x, y, z) = V (x) + V (y) + V (z), (7)

solving 3d Schrödinger equation can be reduced to solving three 1d Schrödinger equa-
tions. For simplicity, I will show this in case of 2d Schrödinger equation instead of the
3d case. The 3d case is similar. Let

V (x, y) = V (x) + V (y), ψ(x, y) = ψx(x)ψy(y) (8)

1Show [Y, Px]ψ = 0
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Then, the Schrödinger equation is given by

− h̄2

2m

(
∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2

)
+ V (x, y)ψ(x, y) = Eψ(x, y). (9)

If we divide both hand sides by ψ(x, y), we get

1

ψx(x)

(
− h̄2

2m

∂2ψx(x)

∂x2
+ V (x)ψx(x)

)
+

1

ψy(y)

(
− h̄2

2m

∂2ψy(y)

∂x2
+ V (x)ψy(y)

)
= E (10)

Thus, the first part on the left-hand side is a function of x only and the second part on
the right-hand side is a function of y only. As their sum is E, a number that depends
neither on x nor on y, each part on the left-hand side must be a number. If we call these
numbers Ex and Ey, we have

− h̄2

2m
ψx(x) + V (x)ψx(x) = Exψx(x) (11)

− h̄2

2m
ψy(y) + V (y)ψy(y) = Eyψy(y) (12)

where Ex + Ey = E. Therefore, we divided one 2d Schrödinger equation to two 1d
Schrödinger equations.

Now, let’s see an example. Consider the following Hamiltonian of 2d harmonic
oscillator:

H =
p2x + p2y
2m

+
1

2
mw(x2 + y2) (13)

What are the allowed energies?
We have E = Ex + Ey, where

Ex = h̄ω(nx +
1

2
), Ey = h̄ω(ny +

1

2
), nx, ny = 0, 1, 2, 3 · · · (14)

The ground state (i.e., the lowest energy state) is given by nx = ny = 0. Therefore, the
ground state energy is E = h̄ω. The first excited state (i.e., the second lowest energy
state) is given by nx = 1, ny = 0 and nx = 0, ny = 1. Its energy is E = 2h̄ω. Notice that
there are two such states. We say that the first excited state has degeneracy 2. Any
linear combination of these two states is the first excited state. In other words, if ψn(x)
is a solution to the Schrödinger equation of 1d harmonic oscillator with the eigenvalue
of (n+ 1

2)h̄ω, the following state is the first excited state:

ψ(x, y) = c1ψ1(x)ψ0(y) + c2ψ0(x)ψ1(y) (15)

Note that we need |c1|2 + |c2|2 = 1, if ψ(x, y) is normalized.
The second excited state (i.e., the third lowest energy state) is given by nx = 2, ny =

0 and nx = 1, ny = 1 and nx = 0, ny = 2 and its degeneracy is 3.
Problem 1. Consider the following Hamiltonian of 3d harmonic oscillator:

H =
p2x + p2y + p2z

2m
+

1

2
mw(x2 + y2 + z2) (16)

What is the degeneracy of the first excited state?

Summary
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� The 3d Schrödinger equation is given by

− h̄2

2m

(
∂2ψ(x, y, z)

∂x2
+
∂2ψ(x, y, z)

∂y2
+
∂2ψ(x, y, z)

∂z2

)
+V (x, y, z)ψ(x, y, z) = Eψ(x, y, z)

� If V (x, y, z) = V (x) + V (y) + V (z), the solution to the 3d Schrödinger equation is
given by

ψ(x, y, z) = ψx(x)ψy(y)ψz(z)

where ψx(x) is the solution to the 1d Schrödinger equation with the potential
V (x), and similarly for ψy(y) and ψz(z). The energy is given by

E = Ex + Ey + Ez

where Ex, Ey, Ez are the energy eigenvalues of each 1d Schrödinger equation.

� The ground state is the lowest energy state. The first excited state is the second
lowest energy state and the second excited state is the third lowest energy state
and so on.

� If n linearly independent states have the same energy, we say the state with that
energy has degeneracy n.
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