
Schrödinger equation

In the last article, we have seen that a particle is a wave with wavelength
given by h/p. Since it is a wave, it has a displacement. From now on, we
will call this displacement “wave function.” But, what is a wave? Recall
that in our earlier article “Travelling wave,” we learned that wave can be
expressed in terms of sine and cosine functions. Also, remember that sine
and cosine functions can be expressed in terms of exponential function using
Euler’s theorem. These considerations yield following for the wave function
ψ(x):

ψ(x, t) = ei(
2π
λ
x− 2π

T
t) (1)

where λ is the wavelength, and T is period. Certainly, this is a wave mov-
ing in positive x-direction. Now, using de Broglie’s formula and Planck’s
formula, the above equation can be re-expressed as follows:

ψ(x, t) = e
i( p
h/(2π)

x− E
h/(2π)

t)
(2)

If we define h̄ = h/(2π), the above equation can be re-expressed as:

ψ(x, t) = ei(
p
h̄
x−E

h̄
t) (3)

Now, notice following:

∂2ψ

∂x2
= −p

2

h̄2
ψ

− h̄2

2m

∂2ψ

∂x2
ψ =

p2

2m
ψ (4)

The above equation is derived when p is constant. For example, if there
is a potential energy that depends on the position x, p would not be a
constant, but depends on the position x. However, we will assume that the
above equation is valid generally. (After all, the derivation of Schrödinger
equation in this article is heuristic, rather than rigorous. If you want to
know a rigorous derivation, please read my “short introduction to quantum
mechanics” series. However, you would need to know linear algebra.)

Now, let’s use the following fact:

E =
p2

2m
+ V (x) (5)
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where E is the total energy and V (x) is potential energy. Then, we have:

p2

2m
ψ(x) + V (x)ψ(x) = Eψ(x)

− h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (6)

where in the last step we used (4). This equation is called “time-independent
Schrödinger equation” in 1-dimension. In 3 dimensions, it is given as follows:

− h̄2

2m
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
)ψ(x, y, z, t) + V (x, y, z)ψ(x, y, z, t) = Eψ(x, y, z, t)

(7)
Here, the double partial derivatives with respect to y and z come from

the momentum squared components of y and z. In other words,

− h̄2

2m

∂2ψ

∂y2
ψ =

p2y
2m

ψ, − h̄2

2m

∂2ψ

∂z2
ψ =

p2z
2m

ψ (8)

Using these relations, it is easy to check () can be obtained from following
3-dimensional formula:

p2x
2m

+
p2y
2m

+
p2z
2m

+ V = E (9)

Now, notice also that (3) implies:

ih̄
∂ψ

∂t
= Eψ (10)

Plugging this into (), we get:

− h̄2

2m
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
)ψ(x, y, z, t)+V (x, y, z)ψ(x, y, z, t) = ih̄

∂ψ(x, y, z, t)

∂t
(11)

This is called “time-dependent Schrödinger equation.”
You might wonder what the interpretation of ψ is. As advertised in our

earlier article “Probability density function,” the answer is that its abso-
lute value squared is the probability density. Considering that we explained
that the displacement squared is proportional to the intensity in our earlier
article “Young’s interference experiment, revisited,” this sounds very reason-
able. If you shoot electrons through double slit, it is more probable for the
electrons to end up in the locations where constructive interference occurs
than any other locations, since the intensity of the wave is high there. Also,
the electrons will never end up in the locations where destructive interfer-
ence occurs since the intensity is zero there. In other words, |ψ|2 denotes
the probability density function that particles will be found there. The only
difference between the case in this article and the case in our articles on
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Young’s interference is that ψ can be a complex number, while the displace-
ments in the earlier articles were always a real number. The square of a
real number, such as the displacement in our earlier articles, is always real,
while the square of a complex number such as ψ, the wave function, is not
always real. As the probability density function is always real, we need |ψ|2
instead of ψ2.

The wave function that satisfies
∫
dx|ψ(x)|2 = 1 (which implies that the

total probability is 1, as explained in that article) is called a “normalized”
wave function.

Problem 1. Let a wave function of a particle with a mass m given as
follows by a Gaussian form:

ψ(x, t) = Ae−x2
(12)

By normalizing the wave function find A. Also find the potential V (x).

Summary

• From
p2x
2m

+
p2y
2m

+
p2z
2m

+ V = E

and de Broglie’s matter wave formula, one can infer the following
Schrödinger equation:

− h̄2

2m
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
)ψ(x, y, z, t)+V (x, y, z)ψ(x, y, z, t) = Eψ(x, y, z, t)

• |ψ|2 denotes the probability density function that particles will be
found there.

• Normalized wave function satisfies∫
dx|ψ|2 = 1
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