The Sandwich theorem and the limit of $\sin \theta / \theta$

In this article, we will first explain the sandwich theorem, then apply it to calculate $\lim _{\theta \rightarrow 0} \sin \theta / \theta$.

The Sandwich theorem says, if

$$
\begin{equation*}
f(x) \leq g(x) \leq h(x) \tag{1}
\end{equation*}
$$

is satisfied, and we have

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L \tag{2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\lim _{x \rightarrow a} g(x)=L \tag{3}
\end{equation*}
$$

Even though the rigorous proof may be hard, the theorem is intuitively clear. Let me explain why. (1) implies that $g(x)$ is "sandwiched" between $f(x)$ and $h(x)$. Thus, its limit must be sandwiched between the limits of $f(x)$ and $h(x)$. In other words,

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) \leq \lim _{x \rightarrow c} h(x) \tag{4}
\end{equation*}
$$

However, from (2), we have

$$
\begin{equation*}
L \leq \lim _{x \rightarrow a} g(x) \leq L \tag{5}
\end{equation*}
$$

Thus, we conclude (3). In other words, the function $f(x)$ and $h(x)$ sandwich the function $g(x)$ so tightly that the limits of $f(x)$ and $h(x)$ determine the limit of $g(x)$.

Problem 1. (Hint ${ }^{1}$)

$$
\begin{equation*}
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=? \tag{6}
\end{equation*}
$$

[^0]Now, let's calculate $\lim _{\theta \rightarrow 0} \sin \theta / \theta$. See the figure. You see that a circle centered around the origin $O, \triangle O A C, \triangle O A B$. We will compare the area of $\triangle O A B$, the sector $O A B$ and $\triangle O A C$. The radius of the circle is given by r and the angle $A O B$ by θ. We use the radian here. From the figure, the following relation is clear.

$$
\begin{equation*}
\text { Area of } \triangle O A B<\text { Area of sector } O A B<\text { Area of } \triangle O A C \tag{7}
\end{equation*}
$$

The base of $\triangle O A B$ is the length of $\bar{O} A$, which is r. The height of $\triangle O A B$ is given by the length of dotted line. As the length of $\overline{O B}$ is r, the height of $\triangle O A B$ is $r \sin \theta$. The base of $\triangle O A C$ is the length of $\overline{O A}$, which is r. The height of $\triangle O A C$ is given by the length of $\overline{A C}$ is $r \tan \theta$. Then, (7) yields

$$
\begin{equation*}
\frac{1}{2} r \cdot r \sin \theta<\frac{1}{2} r^{2} \theta<\frac{1}{2} r \cdot r \tan \theta \tag{8}
\end{equation*}
$$

Dividing all three terms by $\left(r^{2} \sin \theta\right) / 2$, we get

$$
\begin{equation*}
1<\frac{\theta}{\sin \theta}<\cos \theta \tag{9}
\end{equation*}
$$

We can now use the Sandwich theorem. The above relation implies

$$
\begin{gather*}
\lim _{\theta \rightarrow 0} 1 \leq \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta} \leq \lim _{\theta \rightarrow 0} \cos \theta \tag{10}\\
1 \leq \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta} \leq 1 \tag{11}
\end{gather*}
$$

which implies the following by the Sandwich theorem

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1 \tag{12}
\end{equation*}
$$

Thus, we conclude

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \tag{13}
\end{equation*}
$$

Problem 2. $\left(\right.$ Hint $\left.^{2}\right)$

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=? \tag{14}
\end{equation*}
$$

Problem 3. $\left(\right.$ Hint $\left.^{3}\right)$

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\theta}=? \tag{15}
\end{equation*}
$$

Summary

- The Sandwich theorem says, if

$$
f(x) \leq g(x) \leq h(x), \quad \text { and } \quad \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then,

$$
\lim _{x \rightarrow a} g(x)=L
$$

- Using the sandwich theorem, we can prove

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

[^1]
[^0]: ${ }^{1}$ Use $-x \leq x \sin \frac{1}{x} \leq x$ for $x>0$ and $x \leq x \sin \frac{1}{x} \leq-x$ for $x<0$.

[^1]: ${ }^{2}$ Use $\tan \theta=\sin \theta / \cos \theta$.
 ${ }^{3}$ Let $3 \theta=\alpha$, use $\sin 3 \theta / \theta=3 \sin \alpha / \alpha$.

